Page 117 - Engineering Mathematics Workbook_Final
P. 117

Differential Equations & Partial Differential Equations

                        x
                       e x −
                   (a)  (   2   y 2 )  =  c                       203.  The differential equation
                                                                                                2
                                                                         ( xy  3  +  y cos  ) x dx + ( x y +    sin  ) x dy = 0
                                                                                                  2
                   (b)  (   2   y 2 )  =  c                               is exact for
                       e x +
                        x
                        −
                         x
                       e
                   (c)  (   x +  2  y 2 ) =  c                           (a)     3 ,  =  =  1
                                                                                  2
                   (d)  (   x −  2  y 2 )  =  c                          (b)    1,  =  =  3
                        −
                         x
                       e
                                                                                         2
            200.  The solution of                                                 2
                   (  y xy dx −    ( x x y dy =    0  is                 (c)     3 ,  =  =  1
                                             )
                             )
                           2
                                      +
                                          2
                       −
                           x    x                                      (d)    1,  =  =  2
                   (a) ln             −  =  c                                      3            [GATE]
                           y    y
                                                                  204.  For the differential equation,
                           x    x
                   (b) ln             +  =  c                       f  ( , x y )  dy  +  g ( , x y =  ) 0 to be
                           y    y                                               dx
                                                                         exact,
                           x 
                                     =
                   (c) ln             +  xy c                            f     g            f     g
                           y                                           (a)     =             (b)     =
                                                                               y    x              x    y
                           x 
                                     =
                   (d) ln             −  xy c                                                  2  f    2 g
                           y                                           (c)  f =  g           (d)     x 2  =    y 2

            EXACT DIFFERENTIAL EQUATION
                                                                                             [GATE-1997-CE]

            201.  The differential equation
                                                                          VARIABLE SEPARABLE
                   ( 27x + ky  cos  ) x dx + ( 2sin x − 27y 3 ) dy = 0
                        2
                    is exact for k = ____.                        205.  The solution of   dy  =  y  with initial
                                                                                                  2
                                                                                          dx
                                                  [GATE]
                                                                                       1
                                                                                y
                                                                         value  ( ) 0 =  bounded in the
            202.  If the integrating factor of                           interval
                               )
                   ( x y +  3y dx +   ( 3x y x dy =                      (a) −             (b) −     1
                                                )
                      7
                         2
                                             −
                                          8
                                                       0
                                                                                                         x
                                                                                   x
                       
                          
                   is  x y  then  =   ____  and                         (c)  x   1, x   1   (d)  2 x−  
                                                                                                            2
                    =  ____ .
                                                                                            [GATE-2007-ME]
                                                  [GATE]

                                                            115
   112   113   114   115   116   117   118   119   120   121   122