Page 120 - Engineering Mathematics Workbook_Final
P. 120

Differential Equations & Partial Differential Equations

            215.  Which ONE of the following is a                        (a) sec y +  2  sec y   tan y
                   linear non-homogeneous differential
                   equation, where x and y are the                       (b) tan y +  2  sec y   tan y
                   independent and dependent variables
                   respectively?                                                        1
                                                                         (c)   sec y +  2  sec y 

                       dy           −        dy                                               tan y
                                     x
                   (a)     +  xy =  e   (b)     +  xy =  0
                       dx                    dx                                         1
                                                                         (d)     2                     [GATE]
                       dy          −         dy     −                        tan y +  sec y   tan y
                                     y
                   (c)     +  xy =  e   (d)     +  e  y  =  0
                       dx                    dx                   219.  The solution of the differential
                                                                         equation
                               [GATE-2014-EC-SET 3]                      ( x +  y +  2x dx +   2ydy =
                                                                                        )
                                                                            2
                                                                                 2
                                                                                                       0
            216.  The integrating factor for the
                   differential equation                                 (a)  (   2   y 2 )  =  c
                                                                             e x −
                                                                              x
                    dp  +  K p =  K L e − K t
                                          1
                    dt     2       1 0      is                           (b)  (   2   y 2 )  =  c
                                                                             e x +
                                                                              x
                   (a) e − K t           (b) e − K t                     (c)  (    2     2 )
                                                2
                          1
                                                                              −
                                                                               x
                                                                             e    x +  y   =  c
                   (c) e K t             (d) e K t
                                               2
                         1
                                                                         (d)  (   x −  2  y 2 )  =  c
                                                                              −
                                                                               x
                                                                             e
                               [GATE-2014-CE-SET 2]
                                                                                     2
            217.  Consider the differential equation              220.  Consider    d y  + b  dy  +  cy =  0  where
                   ( t − 81 )  dy  + 5ty =  sin ( ) t  with                         dx 2     dx
                     2
                             dt                                          b & c are real constants. If
                                                                                
                    y ( ) 1 =  2 . There exists a unique                 y =  x e − 5x   is a solution then
                   solution for this differential equation               (a) both b and c are positive
                   when t belongs to the interval                        (b) b is positive, and c is negative

                   (a) (-2, 2)           (b) (-10, 10)                   (c) b is negative but c is positive

                   (c) (-10, 2)          (d) (0, 10)                     (d) both b and c are negative


                          [GATE-2017 EE SESSION-1]                221.  The differential equation  y +  11  y =  0
                                                                         is subjected to the conditions
            218.  The integrating factor of
                                                                          y ( ) 0 = ,  ( ) 0y  = . In order that
                                                                                 0
                                         2
                   (cos sin 2y  ) x dx + ( cos y − cos 2  ) x dy = 0
                                                                         the equation has non-trivial solutions
                    is
                                                                         the general value of   is




                                                            118
   115   116   117   118   119   120   121   122   123   124   125