Page 118 - Engineering Mathematics Workbook_Final
P. 118
Differential Equations & Partial Differential Equations
206. The solution of the differential 209. The solution of
equation dy = + tan
y
y
dx x is
x
2
−
−
2
0
y 1 x dy + x 1 y dx = is
y
−
(a) 1 x = 2 c (a) sin x = xc
y
(b) 1 y− 2 = c (b) tan = xc
x
−
2
−
2
(c) 1 x + 1 y = y
c
(c) cosec = xc
+
2
(d) 1 x + 1 y = x
2
+
c
(d) cot y = xc
[ESE-2017 (EE)] x
207. The figure shows the plot of y as a 210. Solve the differential equation,
function of x. The function shown is 2 dy 3 3
the solution of the differential xy dx = x + y
equation (assuming all initial
conditions to be zero) is [GATE-1994-ME]
2
d y dy 211. A curve passes through the point (x =
(a) = 1 (b) = + x 1, y = 0) and satisfies the differential
dx 2 dx
2
dy dy dy = x + y 2 + y
(c) = − x (d) = x equation dx 2y x . The
dx dx
equation that describes the curve is
[GATE-2014 (IN-SET 1)]
y 2
HOMOGENEOUS DIFFERENTIAL (a) ln 1+ 2 = x − 1
EQUATION x
dy 1 y 2
208. The solution of = sin (x + ) y is (b) ln 1+ = x − 1
dx 2 x 2
(
) sec x +
x c
(a) tan x + y − ( ) y = + y
(c) ln 1+ x = x − 1
2
(
(b) sec x + y ) tan x− ( + ) y = x + c
2
1 y
(
+
(c) tan x + y ) cos x− ( + ) y = x c (d) ln 1+ x = x − 1
2
(
+
(d) tan x + y ) cot x− ( + ) y = x c
[GATE 2018 (EC)]
116

