Page 130 - Engineering Mathematics Workbook_Final
P. 130

Differential Equations & Partial Differential Equations

                           x    ay                                       (a) The value of u(2, 2) = -1
                   (a)  z =  +     + b
                           a     x
                                                                         (b) The value of u(2, 2) = 1

                           x    ay
                   (b)  z =   +    +  b                                                         1 1     1
                           b     x                                       (c) The value of u    ,       =
                                                                                              2 2      2

                        2
                                         b
                   (c)  z =   ( 4 ax +  ) y +                                                 1 1     1
                                                                         (d) The value of u     ,         =
                               2
                          −
                   (d) (z b   ) =   ( 4 ax +  ) y                                             2 2     2
                                                                     Partial Differential Equations
            275.  For     an     arbitrary   continuously
                   differentiable function f, which of the        277.  The one dimensional heat conduction
                   following  is  a  general  solution  of               partial differential equation
                               )
                          −
                     ( z px qy =   y −  x                                         2
                                    2
                                         2
                                                                           T  =    T  , is
                              2
                                   2
                        2
                   (a)  x +  y +  z =  f xy                                 t     x 2
                                         ( )
                                                                         (a) parabolic         (b) hyperbolic
                   (b) (x +   ) y  2  +  z =  f xy
                                    2
                                          ( )
                                                                         (c) elliptic          (d) mixed
                                   2
                        2
                              2
                   (c)  x +  y +  z =    ( f y x−  )
                                                                                                [GATE – 1996]
                   (d)  x +  y +  z =  f  ( (  x +  ) y  2  +  z 2 )    278.  The one dimensional heat conduction
                                   2
                              2
                         2
                                                                         partial differential equation
                        
                            , x
            276.  Let  ( ) t  be the solution of initial                   T  =    2 T   is
                                                                            t     x 2
                   boundary value problem
                     2 u    2 u                                        (a) parabolic         (b) hyperbolic
                                   
                                                0
                                           , t
                        =      , 0 x    ;
                     t   2    x 2                                      (c) elliptic          (d) mixed
                                     x                                                [GATE – 1996 (ME)]
                   u ( ,0x  ) cos=             ,  0 x ;
                                    2                           279.  The number of boundary conditions
                                                                         required to solve the differential
                     u
                        x
                       ( ,0 =                                                        2     2 
                            ) 0, 0 x ,
                     t                                                  equation       +       is
                                                                                     x 2    y 2
                     u ( ) 0t = ,  t   0.
                        0,
                     x                                                  (a) 2                 (b) 0

                                                                         (c) 4                 (d) 1






                                                            128
   125   126   127   128   129   130   131   132   133   134   135