Page 129 - Engineering Mathematics Workbook_Final
P. 129
Differential Equations & Partial Differential Equations
: →
269. The equation of the curve satisfying 272. Let y R R be a solution of the
the differential equation d y
2
=
−
x
QDE, − y e , x R ,
dy 2 dy dx 2
y + (x − ) y − x = 0 can be y ( ) 0 = y 1 ( ) 0 = 0 . Then which of the
dx dx
a following are true?
(a) y attains its minimum on R.
(a) Circle (b) Straight line
(b) y is bounded on R.
(c) Parabola (d) Ellipse 1
( )
−
x
(c) lime y x = .
270. For the boundary value problem, x→ 4
y + 11 y = 0 , (d) lime y x = 1
( )
x
)
)
( ), y −
1
( y = y 1 ( = y x→− 4
−
( ) .
273. Consider the Lagrange equation
To each eigen value , there z z
corresponds x 2 + y 2 = (x + ) y z . Then the
x y
(a) only one eigen function general solution of the given equation
is
(b) two eigen functions xy x − y
(a) F , = 0 for an
(c) two linearly independent eigen z z
functions arbitrary differentiable function F.
(d) two orthogonal eigen functions x − y 1 1
(b) F , − = 0 for an
2
d y z x y
271. Let − q ( ) x y = 0, 0 x , arbitrary differentiable function F.
dx 2
dy 1 1
y ( ) 0 = 1, ( ) 0 = 1, where q(x) is (c) z = f − for an arbitrary
dx x y
monotonically increasing continuous differentiable function f.
function. Then, 1 1
(d) z = xy f − for an
y
(a) ( ) x → as x → x y
arbitrary differentiable function f.
dy
(b) → as x →
dx 274. Which of the following are complete
integral of the partial differential
(c) y(x) has finitely many zeros in 2
)
0, equation pqx + yq = 1.
(d) y(x) has infinitely many zeros in
)
0, .
127

