Page 126 - Engineering Mathematics Workbook_Final
P. 126

Differential Equations & Partial Differential Equations

                  CLASSIFICATION OF P.D.E                                                    ( n t  cosn  )
                                                                                                 2
                                                                                               −
                                                                             u
                                                                                 , x
                                                                         (b)  ( ) t =    A e         x   with
                                                                                            n
            252.  Consider the following partial                                       n= 0
                                                                               2
                   differential equation:                                 A =      f x
                                                                                      ( )cosnx dx
                                                                           n
                       2      2        2                                    0
                                                     0
                   3      +  B       + 3      +  4 =                    (c)
                       x 2     x y       y 2
                                 
                                                                                              −     2n+ 1     2              
                                                                                   
                   For this equation to be classified as                 u ( ) t =  A e       2               sin            2n + 1        x    
                                                                             , x
                                                                                      n
                                                                                                          2
                                             2
                   parabolic, the value of  B  must be                    with    n= 0                          
                   _____                 [GATE 2017]                           2               2n + 1  
                                                                                                        
                                                                          A =        f x            x dx
                                                                                      ( )sin
                                                                                                        
                                                                                                         
            253.  The type of partial differential                         n     0              2     
                   equation
                    2 P  +   2 P  +  3    2 P  +  2  P  −  P  =  0     (d)
                                                                                    
                      x 2    y 2            x    y                 u ( ) t =  , x   A n exp −  (  n t ) sin nx
                                                                                                  2
                                      x y
                                                                                                        ( )
                    is                                                             n= 1
                                                                                     2  
                                                                                                    nx
                   (a) elliptic          (b) parabolic                   with  A =    0  f  ( )sinx  ( )dx
                                                                                n
                   (c) hyperbolic        (d) none of these
                                                                  255.  If u = (x, t) is such that
                               [GATE-2016-CE-SET 1]                        2 u  =  4   2 u  , 0   x  , t  ,
                                                                                              
                                                                                                       0
                                                                           t   2    x 2
            254.  The solution of the initial boundary
                                     u    2 u                          u ( ) u        ) 0
                                                                                     ( ,t =
                                                                            0,t =
                                                  
                                                      
                   value problem       =        0 x 
                                     t    x 2
                   , t  0 with boundary and initial                     u x    ) 0;   u ( ,0 =  x  ) sin x  then
                                                                           ( ,0 =
                   conditions                                                           t 
                     u ( ) 0 u          ),    0                                    
                        0,t = =
                                                                               ,
                     x              ( ,t t   and                       u     3 6         is ________
                     ( ,0 =
                   u x    )   f x       
                                ( ), 0 x   is ____
                                                                             3                     3
                                                                         (a)                   (b)
                   (a)                                                       4                     8
                                      −    −  2n+   1   2   t           
                             
                         )
                   u ( , x t =  A e       2               cos     2n + 1 x        (c)   3        (d)   3
                                n
                            n= 0                   2                        4                     8
                    with
                         2                 2n + 1    
                    A =        f  ( )cosx      x dx
                                                  
                                                   
                     n
                           0               2    



                                                            124
   121   122   123   124   125   126   127   128   129   130   131