Page 134 - Engineering Mathematics Workbook_Final
P. 134

Differential Equations & Partial Differential Equations
                                          k     x     −  k           x    2 y    2 y

                   (a)  cos kt   C  ( ) C e         +  C e                      (d)   t   2  =  c 2    x 2
                                  
                                                2
                                     1
                                                        
                                                                  309.  The number of arbitrary constants in
                                    k     x     −  k           x  the general solution of one
                   (b) Ce   kt  C e         + C e            
                              1          2                             dimensional wave equation is
                                                  

                                                                  310.  Which of the following differential
                   (c)                                                   equations is parabolic?
                                                    
                      kt         k              k   
                                        +
                   Ce   C  cos      x C  sin −      x
                              1          2                    (a) one dimensional wave equation
                                    
                                               
                                                                         (b) one dimensional heat equation
                   (d)                                                   (c) Laplace equation
                                    k             k     
                                        
                                                         
                                                   
                           
                                           +
                   C sin kt C  cos       x C  sin −      x          (d) Poisson’s equation
                                 1          2             
                                        
                                                   
                                                          
                                                                  311.  The solution of the equation
                                                                           2 y     2 y
                                        u     u                             =  4     , representing the
            306.  The solution of 3      +  2    =  0,                     t   2    x 2
                                        x     y                        vibrations of a string of length 5
                     ( ,0 =
                                 x
                                −
                   u x    ) 4e                                           subject to the conditions,
                                                                                                    y
                                                                            0,t =
                                                                                         5,t =
                                    2 u    2 u                          y ( ) 0; y    ( ) 0;       t   =  0
                                                       )
            307.  The equation         +      =  f  ( ,x y
                                    x 2    y 2                         when t =  0 and
                                                                           ( ,0 =
                                                                                                     
                   is                                                     y x   ) sin2 x −    2sin5 x  is
                   (a) Elliptic          (b) Parabolic                                      2 u    2 u
                                                                  312.  The solution of        =       with
                   (c) Hyperbolic        (d) circular                                       t   2    x 2
                                                                            0,t =
                                                                                     1,t =
                                                                                               u x
                                                                         u ( ) u     ( ) 0; ( ,0 =  and
                                                                                                      ) 0
            308.  The one dimensional wave equation
                   is                                                     u ( ,0 =
                                                                              x
                                                                                  ) u  (u  is a constant) is
                                                                           t          0   0
                         2 u    2 u
                   (a)      +      =  0
                         x 2    y 2                             313.  A tightly stretched string with fixed
                                                                         end points x = 0 and  x l =  is initially
                         2 u    2 u                                    in a position given by
                                             )
                   (b)      +      =  f  ( ,x y
                         x 2    y 2                                                    x   
                                                                          y =  y 0  sin 3   l       . If it is released
                         u       2 u                                                   
                   (c)     =  c 2
                         t       x 2




                                                            132
   129   130   131   132   133   134   135   136   137   138   139