Page 127 - Engineering Mathematics Workbook_Final
P. 127

Differential Equations & Partial Differential Equations

            256.  The number of boundary conditions                      (d) The solutions are not dependent
                   required to solve the differential                    on the boundary conditions.
                               2     2 
                   equation       +       is                                         [GATE-2016, 2 MARKS]
                               x 2    y 2
                                                                  259.  Solution of Laplace’s equation
                   (a) 2                 (b) 0                           having continuous second-order
                                                                         partial derivatives are called
                   (c) 4                 (d) 1

                                                                         (a) biharmonic functions
                                      [GATE-2001 (CE)]
                                                                         (b) harmonic functions
            257.  The solution of the partial differential
                               u       2 u                             (c) conjugate harmonic functions
                   equation      =        is of the form
                               t     x 2
                                                                         (d) error functions
                                    ( k /  ) x  − ( k /  ) x 
                            ( ) C e
                   (a)  cos kt        1  + C e                                [GATE-2016; 2 MARKS]
                       C
                                              2
                                                                  260.  Solution  of  the  differential  equation
                                                                          dy
                                                                                 −
                                ( k /  ) x   − ( k  /  ) x               =  e x y (e −  x  e y )  is
                   (b) Ce kt        C e  +  C e                     dx
                               1
                                            2
                                                                                 x
                                                                              y e
                                                                                           x
                                                                         (a) e e =   e e x (e −  ) 1 + C
                   (c)
                      kt      (       )         (        )                  y     x    x e x
                                                                                         −
                                         +
                   Ce       C 1 cos  / k   x C 2  sin −  / k   x         (b) e =  e −  e  + C
                                                                                    x
                                                                              y
                   (d)                                                   (c) e =  (e −   ) 1 +  ce − e x  +  C
                                                                                       (
                                                                                               )
                                                                       (d)  ye =  e e −    1 +
                                                                                          x
                                                                                      x
                                                                                ex
                                                                                         e
                                              +
                   C sin kt   ( ) C 1 cos (  / k   ) x C 2  sin −  (  / k   ) x             C
                            
                            
                               [GATE-2016-CE-SET 1]               261.  Solution       of      the      equation
                                                                          dy   1          1
                                                                                                 y
            258.  Which one of the following is a                            +   tan y =   2  tan sin y  is
                   property of the solutions to the                       dx   x          x
                   Laplace equation:   2  f =  0 ?                      (a) 2x =  sin y (1 2cx+  2  )
                   (a) The solutions have neither                                              2
                   maxima nor minima anywhere except                     (b) 2x =  sin y (1 cx+  )
                   at the boundaries.
                                                                         (c) 2x + sin y (1 cx+  2 ) 0=
                   (b) The solutions are not separable in
                   the coordinates.                                      (d)  x +  2sin y (1 2cx+  2 ) 0=


                   (c) The solutions are not continuous.





                                                            125
   122   123   124   125   126   127   128   129   130   131   132