Page 150 - Engineering Mathematics Workbook_Final
P. 150

Complex Variables

            96.    Which of the following is not                                         c   1
                   harmonic                                       100.  The value of       z a  dz  where ‘c’ is
                                                                                            −
                                                                                      −
                   (a) u =  sinh y   cos y                              the circle  z a =   r  is

                                                                         (a) 0                 (b) 2 i 
                           1
                   (b) u =   log ( x +  2  y 2 )                         (c) 2                (d)  i 
                           2
                                                                  101.  The value of     c   zdz from z = 0 to
                                  2
                   (c) u =  x +  2  y                                    z =  4 2i  along the curve ‘c’ given
                                                                               +
                                                                              =
                                                                         by  z t +  2  it
                                  2
                   (d) u =  x −  2  y                                             8i                     8
                                                                         (a) 10 −              (b) 10i +
            97.    The function  ( ) secf z =  z  is                              3                      3
                                                                                  8
                   (a) analytic for all ‘z’                              (c) 10 −              (d) 0
                                                                                  3i

                                      =
                   (b) analytic for  z                                                           sin z
                                                                  102.  The residue of  ( ) z =         at z = 0
                                                                                         f
                                                                                                  z 8
                   (c) not analytic at  z =                              is
                                           2
                                                                         (a) 0                 (b) −  1
                   (d) None                                                                          7!

                                                                            1
                                        +
                               f
            98.    If  z =  ,  ( ) z =  u iv is analytic                 (c)                   (d) None
                          2                                                  7!
                                  sin2x                                                  f z =
                   and u =                      then              103.  The residue of  ( ) cot z  at any
                            cosh2y +   cos2x                             one its poles is
                    f  ( ) z =
                                                                         (a) 0                 (b) 1
                   (a) tan z c+          (b) secz c+
                                                                         (c)  3                (d) none
                             +
                                                  +
                   (c) cot z c           (d) sin z c
                                                                  104.  Let  =   e i /10 , then residue of
                          −
                                           2
            99.    Let U V =     (x −  y )( x +  4xy +  y 2 )                        1
                                                                                               =
                                                                          f  ( ) z =      at  z   is
                                                                                   +
                                  +
                   and  ( ) z =  u iv is analytic then                            1 z  10
                        f
                    f  ( ) z  in terms of z is                                                    
                                                                         (a) −                 (b)
                                                                               10                 10
                                              2
                                                  c
                   (a)  iz−  3  +  c      (b)  z +
                                                                                i −               i   
                        2
                   (c)  z + 1            (d) iz                          (c)   5               (d)   5




                                                            148
   145   146   147   148   149   150   151   152   153   154   155