Page 151 - Engineering Mathematics Workbook_Final
P. 151
Complex Variables
105. The value of ‘P’ such that the 109. The value of
function z cos z dz is
1 1 px 1 = ( z z − 2 )(z − ) 4
2
f ( ) z = log ( x + y 2 ) i+ tan −
2 y i i
is analytic is (a) (b) −
4 4
(a) 1 (b) -1 (c) i (d) 2 i
(c) 2 (d) -2 110. Let ‘C’ be the circle z = 1 in the
sin (z − ) 1 complex plane described in counter
106. The function ( ) z = at z 1 z
+
f
z − 1 clock wise then c dz
)
−
= 1 is (2 zi z
−
i
(a) removable singular (a) i (b)
−
(c) 2 i (d) 2 i
(b) essential singular
2
(c) pole of order 2 111. The value of c sin z + cos z 2 dz
(z − 4 )(z − ) 2
(d) none
where z = 3 is
z − sin z
107. The function ( ) z = at z = (a) 2 i (b) 2 i
−
f
z 3
−
i
0 is (c) i (d)
(a) removable singular 112. The value of c sec z dz where ‘C’ is
z = 1 is
(b) essential singular
(a) 0 (b) 2 i
(c) pole of order 2
(d) none (c) i (d)
2
1
108. The function ( ) sinf z = at c 1
−
1 z 113. The value of z + 4 dz where ‘c’
2
z = 1 is is
(a) removable singular i
(a) (b) −
(b) essential singular 2 2
i i
(c) zero of the function (c) − (d)
2 2
(d) none
149

