Page 152 - Engineering Mathematics Workbook_Final
P. 152

Complex Variables


            114.  The value of     c   e 2z  dz  where                  (a)   1 3  −  1 5  +  1 7  − ............
                                    (z +   ) 1  4                            z     z    z
                   ‘c’ is  z =  3 is                                     (b)   1  +  1  +  1  + ............
                                                                             z 3   z 5  z 7

                       8 i                  4 i                             1    1     1
                             −
                                                   −
                                                    2
                              2
                   (a)     e             (b)     e                       (c)    +     +    + ............
                        3                     3                              z 2   z 4  z 6
                       8 i                                                   1  −  1  +  1  −
                             −
                              1
                   (c)     e             (d) 0                           (d)   z 2  z 4  z 6  ............
                        3
                                                                  118.  The Taylor series expansion of
            115.  The value of       −  3z +  4  dz  where               f z =                      is
                                                                           ( ) sin z  about  z =
                                    z +  2  4z +  5                                                4
                   ‘c’ is  z = 1 is                                      (a)
                                                                          1             (z    −  /  ) 4  2  (z   −  /  ) 4  3    
                                             1                                   1+   z −       +  +         + ....  
                   (a) 0                 (b)                               2       4        2!           3!          
                                             10
                                                                         (b)

                       4                                                  1             (z    −  /  ) 4  2  (z   −  /  ) 4  3    
                   (c)                   (d) 1                                   1+   z −       −  −         − ....  
                       5                                                   2       4        2!           3!          

                                                                                 z 3   z 5
            116.  The Laurent series expansion of                        (c)  z −   +     − ......
                               1                                                 3!    5!
                    f  ( ) z =        in the valid region
                            4z −  z 2                                    (d) none
                    z   4 is                                     119.  The taylor series expansion of

                                                                          f z =       − 1
                                                                           ( ) Tan z  about z = 0 is
                        
                                             
                   (a)   z n− 1         (b)   z n− 1                            3     5
                       n i =  4 n+ 1         n= 0 4 n+ 1                         z     z
                                                                         (a)  z −   +     − .......
                                                                                 3     5
                                                 2n+
                            n+
                                                    1
                             2
                                             
                        
                   (c)   z              (d)    z                                3     5
                       n= 0 4 n+ 2           n= 0 4 2n+ 2                        z     z
                                                                         (b)  z −   −     − .......
                                                                                  3    5
            117.  The Laurent series expansion of
                                1                                                z 3   z 5
                    f  ( ) z =        , in the region                    (c)  z +   +     + .......
                            z (1 z+  2 )                                          3    5
                    z  1 is                                                     z 3   z 5
                                                                         (d)  z +   +     + .......
                                                                                  3    5







                                                            150
   147   148   149   150   151   152   153   154   155   156   157