Page 211 - Engineering Mathematics Workbook_Final
P. 211

Numerical Methods

            1.     The equation e −  x  4x =  2  0 has a root     4.     If   and  are the forward and the
                   between 4 and 5. Fixed point iteration                backward difference operators

                                           1                             respectively, then  − is equal to
                   with iteration function  e  x /2 .
                                           2                             (a) −               (b) 

                   (a) diverges                                                                    
                                                                         (c)  +              (d)
                   (b) converges                                                                   

                   (c) oscillates                                 5.     One root of the equation e −  x  3x =  2  0
                                                                         lies in the interval (3, 4). The least
                   (d) converges monotonically
                                                                         number of iterations of the bisection
                                                                                                     −
                                                                                                      3
            2.     The formula                                           method so that  error   10  are
                           1                     
                                                    1
                        
                    A f −       +  A f  ( ) 0 +  A f   
                                               2   
                     0  
                               
                                                  
                                                    2
                           2      2                                  (a) 10                (b) 8
                   which approximates the integral                       (c) 6                 (d) 4
                    1  f  ( ) x dx  is exact for polynomials
                    − 1                                           6.     The least squares approximation of
                   of degree less than or equal to 2 if                  first degree to the function
                                                                          f x =
                                                                           ( ) sin x  over the interval
                                  4       2
                   (a)  A =  A =    , A =                                        
                              2
                         0
                                  3   1   3                                −   ,   
                                                                             2 2     is
                   (b)  A =  A =  A =  1                                         
                              1
                         0
                                   2
                                                                             24x                   24x
                                  4          2                           (a)                   (b)
                   (c)  A =  A =    , A = −                                    3                   2
                         0    2        1
                                  3          3
                                                                             24x
                   (d) none of the above                                 (c)                   (d) 24x
                                                                              
            3.     If  x =  is a double root of the
                                                  ( )
                             f x =
                                               f
                   equation  ( ) 0 and if  ''' x  is              7.     The order of the numerical
                                                                         differentiation formula
                   continuous in a neighbourhood of                                 1
                                                                              x
                   then the iteration scheme for                           '' f  ( ) = 12h 2  [−   ( f x − 2h ) +  ( f x + 2h ) +
                                                                                                              0
                                                                               0
                                                                                                 0
                   determining  :                                       16   ( f x −  ) h +  ( f x + h ) 30 f−  ( )]x 0
                                                                                               0
                                                                                  0
                                   ( )
                               2 f x                                     (a) 2                 (b) 3
                    x n+  =  x −      n   has the order
                                   ( )
                           n
                      1
                                  ' f x n                                (c) 4                 (d) 1
                   (a) 2                 (b) 1
                   (c) less than 2       (d) less than 1


                                                            209
   206   207   208   209   210   211   212   213   214   215   216