Page 212 - Engineering Mathematics Workbook_Final
P. 212

Numerical Methods

            8.     The method                                                                     3
                                                                                        +
                                                                         (a)  x n+ 1  = − 16 6x +
                                                                                             n
                                 1                                                               x n
                       y + =       (k +  3k  ),n = 0,1,.....
                        1 y +
                    n        n       1     2
                                 4
                                                                                       +
                                                                         (b)  x n+ 1  =  3 2x
                                                                                            n
                           ( , y
                   k =  hf x       )
                    1         n  n                                                    3
                                                                         (c)  x  =
                                  2h       2                                n+ 1  x −  2
                            
                   k =  hf x +        , y +   k 1        is used                 n
                            
                               n
                     2
                                        n
                                  3        3                                       2
                   to solve the initial value problem                    (d)  x n+ 1  =  x −  2
                                                                                     n
                                )
                     ' y =  f  ( , x y = − 10y ,  ( ) 0 =                              2
                                                   1
                                            y
                                                                  12.    While solving the equation
                   The method will produce stable                        x −  3x + =  using the Newton-
                                                                           2
                                                                                   1 0
                   results if the step size h satisfies
                                                                         Raphson method with the initial
                                               
                           
                   (a) 0.2 h    0.5     (b) 0 h    0.5                 guess of a root as 1, the value of the
                                                                         root after one iteration is
                                               
                         
                   (c) 0 h    1         (d) 0 h    0.2
                                                                         (a) 1.5               (b) 1
                                   6
                                       x
            9.     The equation  x − − =
                                           1 0 has
                                                                         (c) 0.5               (d) 0
                   (a) no positive real roots
                                                                  13.    Consider the system of equations
                   (b) exactly one positive real root                      5    2 1       x      13  
                                                                                             1       
                                                                         
                                                                                                
                                                                                                      
                                                                                                
                   (c) exactly two positive real roots                     − 2 5 2       x   2   = − 22
                                                                                                
                                                                         
                                                                                                      
                                                                           − 1 2 8         x      14  
                                                                                                      
                                                                                                
                                                                         
                   (d) all positive real roots                                          3       
            10.    The smallest degree of the                            With the initial guess of the solution
                                                                                              
                                                                            0
                                                                             , ,x
                   polynomial that interpolates the data                       x x 2 0  3   0    =  1,1,1 , the
                                                                            1
                     x     -2    -1    0     1     2    3                approximate value of the solution
                                                                                1
                                                                              x
                    f(x)  -58  -21  -12  -13  -6  27                           x 1 , ,x 1  3     after one iteration by the
                                                                                2
                                                                            1
                   Is
                                                                         Gauss-Seidel method is
                   (a) 3                 (b) 4
                                                                                            
                                                                                                             
                                                                                                      −
                                                                                                          −
                                                                                −
                                                                         (a) 2, 4.4,1.625   (b) 2, 4, 3
                   (c) 5                 (d) 6
                                                                                                           
                                                                                           
                                                                                                      −
                                                                         (c) 2,4.4,1.625   (d) 2, 4,3
            11.    Suppose that  x  is sufficiently close
                                   0
                   to 3. Which of the following                   14.    Using Euler’s method taking step size
                   iterations  x n+ 1  =  g x n                          = 0.1, the approximate value of  y
                                      ( ) will converge
                                          3
                   to the fixed point  x = ?                             obtained corresponding to  x =  0.2

                                                            210
   207   208   209   210   211   212   213   214   215   216   217