Page 22 - Engineering Mathematics Workbook_Final
P. 22

Calculus

                   (a)                  (b) 2                                               dy
                                                                  69.    If  x +  y  y =  x  c  then    at (1, 1) is
                                                                                              dx
                   (c) 0                 (d) 1
                                                                                                  −
                                                                         (a) 1                 (b)  1
                             x y
                              2
            66.    If  =   5     5   then                               (c) 0                 (d) 2
                           x +  y 2
                            2
                   x  +    2 xy  +   y  =     ____             70.    If u =  x e z  where  y =  a −  2  x ,
                     2
                                         2
                                                                                                           2
                                                                                   y
                       xx          xy       yy
                                                                                              du
                                                                                 2
                       1                      1                          z = sin x  then find      at (0, 1, 1) is
                   (a)                  (b) −                                               dx
                       4                      4                          ______
                       3                      3                                                   −
                   (c)                  (d) −                          (a) e                 (b)  e
                       4                      4
                                                                              −
                                                                               1
                                                                         (c) e                 (d) 2e
                                   1 4  1 4   
                                                                                                    z
                                                                                          y
            67.    If  z =  sin − 1     x +  y 1      then    71.    If u =  f  (2x −  3 , 3y −  4 , 4z − 2x )
                                 1     6                             then 6u +  4u =
                                  6
                                 x −  y                                        x     y
                    x z +  2xy z +    y z =    ______                    (a)  2u−  z           (b) 8u
                                       2
                     2
                                 xy
                                          yy
                       xx
                                                                                                     z
                                                                             −
                        1                                                (c)  3u               (d) 3u
                                      2
                   (a)     tan z (tan z −  11 )                                  z                   z
                       144
                                                                              Maxima & Minima
                       1
                   (b)    tan z                                   72.    The maxima & minima of the function
                       12                                                          x
                                                                                      2
                                                                          f  ( ) x =   (t − 3t +  ) 2 dt  occurs
                       tan z                                                      0
                                 2
                   (c)      (sec z −  11 )                               respectively at
                       144
                                                                         (a)  x = −  2 and  x = 1
                   (d) None of these
            68.    If                                                    (b)  x = −  1 and  x =  2
                   u ( , x y =  )  x 2  tan 1 ( / y x −  ) y 2  tan − 1 ( / x y ),       (c)  x =  2 and  x = 1

                    x   0, y   0then
                                                                         (d)  x = 1 and  x =  2
                               (
                         +
            x 2 ( 2  / u  x 2 ) 2xy  2  / u  x  ) y +  y 2  (  2  / u  y 2 ) =
                                                                  73.    The maximum value of the function
                                                                          f  ( ) x =  x − 9x +  24x +  in [1, 6] is
                                                                                                    5
                                                                                          2
                                                                                   3
                                            −
                   (a) u                 (b)  u                          ______
                   (c) 2u                (d) 3u                   74.    The values of ‘a’ and ‘b’ for which the
                                                                         function  ( ) x =  x +  ax +  bx  has
                                                                                            3
                                                                                  f
                                                                                                  2

                                                             20
   17   18   19   20   21   22   23   24   25   26   27