Page 21 - Engineering Mathematics Workbook_Final
P. 21
Calculus
4 5 3
(a) (b) (c) (d) 0
3 4 4
5 x sin x 6
4
(c) (d) none of these 60. cos x dx =
3 0
56. Find the mean value ‘c’ of L.M.V.T for (a) 3 2 / 512 (b) 5 2 / 256
1/3
f x = (4 x ) in [1, 6] (c) 3 2 /128 (d) none of these
−
( ) 2 +
(a) 3
61. cos x dx = _____
−
(b) 4 0
(c) 8 62. n x dx = _____ , where [x] is a step
0
(d) cannot be applied function and ‘n’ is an integer.
8 ( n n + ) 1 ( n n − ) 1
f
1
57. If ( ) x = and f(0) = 1 (a) (b)
x + 2 3x + 4 2 2
then the lower and the upper bounds of f
(1) estimated by mean value theorem are (c) n (d) n + 1
2 2
5 1
(a) 2 and 3 (b) and
6 10 2
)
63. log (tan x dx =
3 4 0
(c) and (d) 7 and 5
4 3
(a) 0 (b)
Definite Integrals 2
1 1 x (c) (d)
+
x
58. 2 cos log dx = ____ 4
−
− 1 1 x
2 d e sin x
64. Let F ( ) x = , x 0. If
(a) 0 (b) 1 dx x
sin x 2
4 2e dx = F ( ) k − F ( ) 1 then k
(c) (d) none of these 1 x
2
= ________
4
59. sin x dx = 2
− x u
65. If = log then x + y =
y x y
(a) (b)
2
19

