Page 21 - Engineering Mathematics Workbook_Final
P. 21

Calculus

                       4                     5                               3
                   (a)                   (b)                             (c)                   (d) 0
                       3                     4                                4

                       5                                                    x  sin x  6
                                                                                 4
                   (c)                   (d) none of these        60.               cos x dx =
                       3                                                  0

            56.    Find the mean value ‘c’ of L.M.V.T for                (a) 3 2  / 512       (b) 5 2  / 256
                                       1/3
                    f x =       (4 x  )  in [1, 6]                       (c) 3 2  /128        (d) none of these
                                   −
                      ( ) 2 +
                   (a) 3                                                  
                                                                  61.      cos x dx =  _____
                       −
                   (b)  4                                                 0

                   (c) 8                                          62.     n    x dx =  _____ , where [x] is a step
                                                                          0
                   (d) cannot be applied                                 function and ‘n’ is an integer.

                                    8                                         ( n n +  ) 1          ( n n −  ) 1
                      f
                       1
            57.    If  ( ) x =               and f(0) = 1                (a)                   (b)
                               x +  2  3x +  4                                  2                     2
                   then the lower and the upper bounds of f
                   (1) estimated by mean value theorem are               (c)   n               (d)   n + 1
                                                                             2                      2
                                             5      1
                   (a) 2 and 3           (b)    and                       
                                             6      10                    2
                                                                                      )
                                                                  63.      log (tan x dx =
                       3      4                                           0
                   (c)    and            (d) 7 and 5
                       4      3                                                                   
                                                                         (a) 0                 (b)
                         Definite Integrals                                                        2
                                                                             
                    1            1 x                                   (c)                   (d) 
                                  +
                          x
            58.     2  cos log            dx =  ____                  4
                                  −
                   − 1           1 x 
                    2                                                         d            e sin x
                                                                  64.    Let        F ( ) x      =  , x   0. If
                   (a) 0                 (b) 1                               dx               x
                                                                               sin x   2
                                                                         4      2e    dx =    F ( ) k −  F ( ) 1  then k
                   (c)                   (d) none of these                1    x   
                       2                                                           
                                                                         = ________
                         4
            59.       sin x dx =                                                    2 
                   −                                                                   x        u      
                                                                  65.    If  = log          then  x  +  y  =
                                                                                     y           x      y
                   (a)                  (b)
                                             2



                                                             19
   16   17   18   19   20   21   22   23   24   25   26