Page 23 - Engineering Mathematics Workbook_Final
P. 23

Calculus

                   local minima at x = 4 and point of                      4 x 2  / y x  dy dx =
                   inflection at x = 1 are                        79.         e             _______
                                                                          0  0
                   (a) a = −  3, b = −  24                                     3                     4
                                                                                   8
                                                                                                        7
                                                                         (a) 4e −              (b) 3e −
                   (b) a = − 3, b =  24
                                                                                                     4
                                                                                                        9
                                                                               4
                                                                         (c) 3e +  7           (d) 3e −
                   (c) a =  3, b = − 24
                                                                  80.    The value of     xy dx dy  where ‘R’
                   (d) a =  3, b =  24                                                  R
                                                                         is the region bounded by x – axis,
                                                                                                       2
            75.    The function                                          ordinate x = 2a and the curve  x =  4ay ,
                           )
                                      2
                    f  ( ,x y =  x − 3x +  4y − 10  at (2,               is
                                3
                                             2
                   0) has
                                                                             a 3                   a 4
                                                                         (a)                   (b)
                   (a) a maximum         (b) a minimum                       4                     3
                   (c) a saddle point    (d) both (a) & (b)                  a 4                   a 4
                                                                         (c)                   (d)
            76.    The function                                              6                     8
                           )
                                                 x
                                2
                    f  ( , x y =  x y −  3xy +  2y +  has                                   − y
                                                                  81.    The value of        e  dy dx is
                   (a) No local extremum                                               0  x y

                   (b) One local minimum but no local                        1                 (b) −  1
                   maximum                                               (a)   2                      2

                                                                                                  −
                   (c) One local maximum but no local                    (c) 1                 (d)  1
                   minimum
                                                                  82.    By changing the order of integration, the
                   (d) One local minimum and one local                                   4 2 ax       )
                                                                                         a
                   maximum                                               double integral      f  ( , x y dy dx
                                                                                         0  x 2
                                                                                           4a
            77.    The distance between origin and a point               can be expressed as
                                                    +
                   nearest to it on the surface  z =  2  1 xy              q  s  f  ( , x y dx dy  then q r  =
                                                                                     )
                   is                                                     p  r

                                                                                                    2
                   (a)  3                (b)  2                          (a) y                 (b)  y

                   (c) 1                 (d) None                        (c) 0                 (d)  y


            78.      2    3  xy dx dy = _____                           1  1 x 2  1 x − −  2  y 2  dz dy dx
                                                                             −
                    y=  0 x=  0                                   83.                               = ____
                                                                                         −
                                                                                                 2
                                                                                            2
                                                                          0  0    0     1 x −   y −  z 2
                   (a) 9                 (b) 18
                   (c) 27                (d) 6


                                                             21
   18   19   20   21   22   23   24   25   26   27   28