Page 26 - Engineering Mathematics Workbook_Final
P. 26
Calculus
102. A real function tan x tan x
x + 2 , x for x 0 (a) (b)
f ( ) x = 2y − 1 2y − 1
x + x + 5sin , x x 0
2
3
2
f
. If ( ) x is twice differentiable then (c) sec x (d) sec x
2y − 1 2y − 1
(a) 1, = = 0 (b) 1, = = 5 dy
+
(c) 5, = = − 10 (d) 5, = = 5 106. If x y = a b (x + ) y a b then dx =
2x x 1
103. The derivative of sin − 1 2 with (a) (b)
+
1 x y y
2x
respect to tan − 1 2 is equal to 1 y
−
1 x (c) (d)
x x
(a) 0 (b) 1
107. By applying, Rolle’s theorem for
2x sin x
(c) (d) 2 f ( ) x = in 0, , the value of
−
1 x 2 e x
)
c (0, is
104. If x = ( a sin − ) ,
2
d y
y ( a = cos − ) then = (a) (b)
dx 2 6 4
1
(a) − (c) (d)
a sin 2 2 3
2
108. Which of the following function satisfied
1 all the conditions of Rolle’s Theorem in
(b) − cosec 4
4a 2 the interval [0,1]
1 f x =
(c) − sec 2 / 2 cosec 4 / 2 (a) ( ) tan x
4a
1
1 x , 0 x
(d) sec 2 / 2 cosec 4 / 2 2
f
4a (b) ( ) x =
− , 1 x 1
1 x
2
105. If y = tan x + tan x + tan x + .....
dy 109. By applying Lagranges mean value for
then = the function
dx
24

