Page 25 - Engineering Mathematics Workbook_Final
P. 25
Calculus
3 5 (c) a = 3, b = 2 (d) a = 2, b = 3
(c) log (d) log
2 4 98. Which of the following function is
continuous at x = 3.
1
! n n
93. Lt n
n→ n 2, x = 3
(a) ( ) x = x − 1, x 3
f
(a) 0 (b) e
x + 3 , x 3
1 3
(c) 1 (d)
e 4, x = 3
f
(b) ( ) x =
+
sin2x a sin x − 8 x x , 3
94. If Lt = b where ‘b’ is
n→ 0 x 3 x + 3, x 3
f
finite then a = ____, b = ________ (c) ( ) x =
x − 4, x 3
(a) -2, -1 (b) 2, 1
1
(d) ( ) x = f , x 3
(c) 2, -1 (d) -2, 1 x − 27
3
95. The values of a and b such that x + 3x a , x 1
+
2
f
+
2
a sin x b log (cos x ) 1 99. If ( ) x = is
Lt = bx + 2, x 1
n→ 0 x 4 2
differentiable for ‘x’ then a, b =
(a) -1, -2 (b) 1, 2
(a) a = 3, b = 5 (b) a = 1, b = 2
(c) -1, 2 (d) 1, -2
(c) a = 1, b = 3 (d) a = 3, b = 1
x
96. If y = + x + x + ....... then 100. If 4x − 7 = 5, then the value of
y ( ) 2 = 2 x − − x is
(a) 4 or 1 (b) 4 only 1 1
(a) 2, (b) ,3
(c) 1 only (d) undefined 3 2
97. The values of a and b for which the 3 2
function (c) ,9 (d) ,9
3
2
2x + 1 if x 1
f
2
f ( ) x = ax + b if 1 x is 101. If ( ) x = x − 1 + x − 2 is not
3
5x + 2a if x 3 derivable at x =
continuous every where (a) x = 0 (b) x = 1, 2
(a) a = 2, b = 1 (b) a = 1, b = 2 (c) x = 3 (d) none
23

