Page 60 - Engineering Mathematics Workbook_Final
P. 60

Vector Calculus
                                                                                                              ) )
            31.    Let C be the boundary of the triangle                     (   sin x i +  2y j −  z (1 sin2x k   nds =  ____
                                                                                             $
                                                                                                                    $
                                                                                                               $
                                                                                   2 $
                                                                                                     −
                   formed by the points (1,0,0), (0,1,0) and               S
                   (0,0,1). Then the value of the line                                            
                   integral                                              (a) 1                 (b)   2
                      − 2ydx +  (3x −  4y 2 ) dy + ( z +  3y ) dz
                                                     2
                    C                                                    (c)                  (d) 2
                    is _______

                   (a) 0                 (b) 1                    35.    The value of     −  ydx +  xdy   where C
                                                                                               2
                                                                                                    2
                                                                                       C     x +   y
                   (c) 2                 (d) 4
                                                                                 1
                                                                         is  z =  is _____
            32.    Let,
                                                                                           −
                   B =   (  , , y z ): , , y z  R  & x +  y +  z      4  (a) 2     (b)  2
                                                        2
                                                   2
                                                             2
                          x
                                   x
                           =
                                +
                   . Let, r xi y j +   3k  be vector                     (c) 0                 (d) none
                   valued function defined on B. If               36.    The line integral of  F = 3i x j +  yk
                                                                                                    +
                   r =   x +  y +   z  then the value of                 on the circle  x +  2  y =  2  2
                     2
                                     2
                          2
                                2
                                                                                                         0
                          r r dv  is ______.                                                a , z =
                                2
                      S                                                  described in clockwise is _______
                                                                  37.    For the vector field
                   (a) 16               (b) 32
                                                                         F = −   2  y  2  i +  2  x  2  j + sin y  cos zk
                                                                                                       3
                                                                                                              2
                   (c) 64               (d) 128                              x +  y     x +  y
                                                                         , the value of    F   dr  where C is
            33.    The maximum magnitude of the                                        C
                   directional derivative for the surface                closed contour in xy plane consisting of
                                                                                            2
                   x +   xy yz =   9  at the point (1,2,3) is            parabolas  y =  ( x +  ) 1  and straight
                            +
                     2
                   along the direction __________.                       lines x =   1.
                            +
                                                     +
                                                                                                           2
                   (a) i +  j k          (b) 2i +  2 j k          38.    Let D be the triangular region in R
                                                                         bounded by the y-axis, the line  y = 1
                                                                                        =
                   (c) i +  2 j +  3k    (d) i −  2 j +  3k              and the line  y x . Let C be the
                                                                         boundary curve of the region and C be
            34.    Let S be the surface bounding the region              oriented counter clockwise. Then the
                   x +  2  y   2  1, x ,  y   and  n  is              value  of the line integral
                                     0
                                                   $
                                            0
                                                                              2
                                                                                       2
                                                        1
                   outward drawn unit normal to S.  z                     ( x +  2sin x cos   ) x dx + (4x +  y 2 ) dy
                                                                          C
                   Then                                                   is
                                                                         (a) 1                 (b) 2

                                                                         (c) 4                 (d) 8


                                                             58
   55   56   57   58   59   60   61   62   63   64   65