Page 62 - Engineering Mathematics Workbook_Final
P. 62

Vector Calculus

            46.    Let S be a closed surface for                         and let   (  ,   ) =    +    or ( , x y 
                                                                                                          ) D
                                                                                            2
                   which∬   .        = 1. Then the volume
                             ̅
                               ̂
                                                                             $
                                                                         . If  n  is the outward unit normal to C,
                   enclosed by the surface is __________
                                                                                        nds , evaluated counter-
                                                                         then          $
                                            1                                  C
                   (a) 1                 (b)                             clockwise over C, is equal to _______
                                             3
                       2                                                 (a) 0                 (b)  − 2
                   (c)                   (d) 3
                       3                                                 (c)                  (d)  +  2


                                              [JAM 2006]                                            [JAM 2007]

                             2
                                 R
            47.    Let  : f R →  be thrice differentiable         50.    The work done by the force
                                                                                          +
                                                                                              2
                   and vanish on the boundary of the region              F =  4yi − 3xy j z k  in moving
                                       )
                        ( 1,1  −
                    = −      ) ( 1,1 . Then                             particle over the circular path
                                                                                          0
                                            )
                     1  1  div  (grad f  )( , x y dx dy  is            x +  2  y 2  1 =  , z =  from (1, 0, 0) to (0,
                    −  1 −  1                                            1, 0) is _______
                   _______
                                                                         (a)  + 1             (b)  − 1
                   (a) never 0           (b) 1
                                                                         (c)   −  1 +         (d)   −  1 −
                   (c) 0                 (d) depends on f
                                                                                                    [JAM 2008]
                                               [IISC 2007]
                                                                                                3
                                                                                                 ,
            48.    Let                                            51.    Let V =   ( { , , y z   x  ) R
                                                        +
                   u =  (ae x sin y − 4x i +  +  x cos  ) y j azk        1    x +  y + z   1} and
                                     ) (2y e
                                                                                          2
                                                                                     2
                                                                               2
                   , where a is a constant. If the line integer           4
                     u dr  over every closed curve C is                 F =    xi +  y j +  zk   for
                        
                    C                                                         ( x +  2  y +  2  z 2 ) 2
                   zero, then a is equal to ___________
                                                                                            $
                                                                         ( , ,x y z ) V   Let  n  denoted the
                                            −
                   (a)  2−               (b)  1
                                                                         outward unit normal to the boundary of
                   (c) 0                 (d) 1                           V and S denoted the part
                                                                                                        1   
                                                                                  ) R x +
                                              [JAM 2007]                   ( , , y z   3  :  2  y +  z =   2
                                                                                                 2
                                                                            x
                                                                                                        4  
            49.    Let C denote boundary of semi-circular
                   disc                                                  of the boundary of V. Then
                                                                                   $
                               )
                   D =   (  ,x y  R 2 ;x +  y  1, y    0               S  F   nds  _______
                                        2
                                             2


                                                             60
   57   58   59   60   61   62   63   64   65   66   67