Page 62 - Engineering Mathematics Workbook_Final
P. 62
Vector Calculus
46. Let S be a closed surface for and let ( , ) = + or ( , x y
) D
2
which∬ . = 1. Then the volume
̅
̂
$
. If n is the outward unit normal to C,
enclosed by the surface is __________
nds , evaluated counter-
then $
1 C
(a) 1 (b) clockwise over C, is equal to _______
3
2 (a) 0 (b) − 2
(c) (d) 3
3 (c) (d) + 2
[JAM 2006] [JAM 2007]
2
R
47. Let : f R → be thrice differentiable 50. The work done by the force
+
2
and vanish on the boundary of the region F = 4yi − 3xy j z k in moving
)
( 1,1 −
= − ) ( 1,1 . Then particle over the circular path
0
)
1 1 div (grad f )( , x y dx dy is x + 2 y 2 1 = , z = from (1, 0, 0) to (0,
− 1 − 1 1, 0) is _______
_______
(a) + 1 (b) − 1
(a) never 0 (b) 1
(c) − 1 + (d) − 1 −
(c) 0 (d) depends on f
[JAM 2008]
[IISC 2007]
3
,
48. Let 51. Let V = ( { , , y z x ) R
+
u = (ae x sin y − 4x i + + x cos ) y j azk 1 x + y + z 1} and
) (2y e
2
2
2
, where a is a constant. If the line integer 4
u dr over every closed curve C is F = xi + y j + zk for
C ( x + 2 y + 2 z 2 ) 2
zero, then a is equal to ___________
$
( , ,x y z ) V Let n denoted the
−
(a) 2− (b) 1
outward unit normal to the boundary of
(c) 0 (d) 1 V and S denoted the part
1
) R x +
[JAM 2007] ( , , y z 3 : 2 y + z = 2
2
x
4
49. Let C denote boundary of semi-circular
disc of the boundary of V. Then
$
)
D = ( ,x y R 2 ;x + y 1, y 0 S F nds _______
2
2
60

