Page 345 - Applied Statistics with R
P. 345
14.2. PREDICTOR TRANSFORMATION 345
Fitted versus Residuals Normal Q-Q Plot
0.4 0.4
0.2 0.2
Residuals 0.0 -0.2 Sample Quantiles 0.0 -0.2
-0.4 -0.4
-0.6 -0.6
10.5 11.0 11.5 12.0 12.5 -2 -1 0 1 2
Fitted Theoretical Quantiles
sqrt(mean(resid(initech_fit) ^ 2))
## [1] 27080.16
sqrt(mean(resid(initech_fit_log) ^ 2))
## [1] 0.1934907
sqrt(mean((initech$salary - fitted(initech_fit)) ^ 2))
## [1] 27080.16
sqrt(mean((initech$salary - exp(fitted(initech_fit_log))) ^ 2))
## [1] 24280.36
Predictor Transformations
14.2.2 A Quadratic Model
sim_quad = function(sample_size = 500) {
x = runif(n = sample_size) * 5
y = 3 + 5 * x ^ 2 + rnorm(n = sample_size, mean = 0, sd = 5)
data.frame(x, y)
}

