Page 346 - Applied Statistics with R
P. 346

346                              CHAPTER 14. TRANSFORMATIONS


                                 set.seed(314)
                                 quad_data = sim_quad(sample_size = 200)






                                 lin_fit = lm(y ~ x, data = quad_data)
                                 summary(lin_fit)














                                 ##
                                 ## Call:
                                 ## lm(formula = y ~ x, data = quad_data)
                                 ##
                                 ## Residuals:
                                 ##     Min       1Q  Median       3Q     Max
                                 ## -20.363   -7.550  -3.416   8.472   26.181
                                 ##
                                 ## Coefficients:
                                 ##              Estimate Std. Error t value Pr(>|t|)
                                 ## (Intercept) -18.3271      1.5494   -11.83   <2e-16 ***
                                 ## x             24.8716     0.5343    46.55   <2e-16 ***
                                 ## ---
                                 ## Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                 ##
                                 ## Residual standard error: 10.79 on 198 degrees of freedom
                                 ## Multiple R-squared:   0.9163, Adjusted R-squared:    0.9158
                                 ## F-statistic:   2167 on 1 and 198 DF,   p-value: < 2.2e-16








                                 plot(y ~ x, data = quad_data, col = "grey", pch = 20, cex = 1.5,
                                      main = "Simulated Quadratic Data")
                                 abline(lin_fit, col = "darkorange", lwd = 2)
   341   342   343   344   345   346   347   348   349   350   351