Page 37 - Spotlight A+ SPM Additional Mathematics Form 4 & 5
P. 37

Form
            5          Additional Mathematics    Chapter 5 Probability Distribution


                5.  If Z is a standard normal distribution with mean     8.  If the probability is between z-score, which is a
                  is 0 and standard deviation is 1, thus the value   and b:
                  of  z  gives  the  probability  of  standard  normal             f(z)
                  distribution.
                                     f(z)


                                                                                              z
                                                                                    O a  b
                                               z
                                     O  a
                                                                     P(a , Z , b) = P(Z . a) – P(Z . b)
                     ©PAN ASIA PUBLICATIONS

                Probability by using Standard                    Example 23
                Normal Distribution Table
        CHAP.                                                 Given  Z is a continuous random variable with a
         5      bit.ly/2X8SFlz                                standard normal distribution. Find
                                                              (a)  P(Z . 0.254)
                6.  If given the probability is more than z-score and   (b)  P(Z > 1.056)
                  (a)  the value of a is positive, P(Z . a).
                                                              (c)  P(Z , –1.386)
                                     f(z)
                                                              (d)  P(Z . –2.337)
                                                              (e)  P(Z , 2.337)
                                                              (f)  P(0 , Z , 1.242)
                                               z
                                     O  a                     (g)  P(–2.46 , Z , 1.281)
                  (b)  the value of a is negative, P(Z . –a).  (h)  P(–2.149 , Z , –0.214)
                                                              (i)  P(1.331 , Z , 2.147)
                                     f(z)
                                                              (j)  P(| Z  | . 1.471)
                                                               Solution:
                                                              (a)
                                               z
                                  –a O
                                                                                f(z)
                      P(Z . –a) = 1 – P(Z , –a)
                              = 1 – P(Z . a)

                7.  If given the probability is less than z-score and                      z
                  (a)  the value of a is negative, P(Z , –a)                    0  0.254
                          f(z)                 f(z)
                                                                 From the standard normal distribution table,
                                     =
                                                                     z                5       4
                                  z                    z
                       –a  O                   O  a                                        Substract

                             P(Z , –a) = P(Z . a)                   0.2            0.4013     15
                  (b)  the value of a is positive, P(Z , –a)
                                     f(z)
                                                                       P(Z . 0.25) = 0.4013

                                                                        P(Z . 0.254) = 0.4013 – 0.0015
                                                                                   = 0.3998
                                                z
                                     O  a
                                                                 Thus, P(Z . 0.254) = 0.3998.
                            P(Z , a) = 1 – P(Z . a)

               328                                                                                 5.3.4




         C05 Spotlight Add Math F5.indd   328                                                         19/04/2021   12:43 PM
   32   33   34   35   36   37   38   39   40   41   42