Page 107 - Elementary Algebra Exercise Book I
P. 107

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




               3.58       a 1 ,a 2 , ··· ,a n  are positive numbers and satisfy  a 1 a 2 ··· a n =1 , show
               (2 + a 1 )(2 + a 2 ) ··· (2 + a n ) ≥ 3 .
                                                n
                                                                                         √
                                                                                         3
               Proof: Use an arithmetic mean-geometric mean inequality  a + b + c ≥ 3 abc  (a, b, c  are
                                                                         √
               positive numbers) to obtain  2+ a i = 1+ 1+ a i ≥ 3 a i  (i =1, 2, ··· ,n ). Then
                                                                          3
                                                   √√
                                                n n  3 3           n n

               (2 + a 1 )(2 + a 2 ) ··· (2 + a n ) ≥ 3 ·(2 + a 1 )(2 + a 2 ) ··· (2 + a n ) ≥ 3 ·  a 1 a 2 ··· a n =3a 1 a 2 ··· a n =3 .
               3.59     If a, b, c are side lengths of a triangle, show a b(a − b)+ b c(b − c)+ c a(c − a) ≥ 0
                                                                    2
                                                                                 2
                                                                                             2
               and determine when the equal sign is reached.
               Proof: Let  a = y + z, b = z + x, c = x + y  where  x,y,z  are positive numbers. Substitute

               them into the inequality:
                      22                         22                        22
               (y + z) (x + z)(y − x)+(z + x) (x + y)(z − y)+ (x + y) (y + z)(x − z) ≥ 0 ⇔(y + z) (x + z)(y − x)+(z + x) (x + y)(z − y)+ (x + y) (y + z)(x − z) ≥ 0 ⇔
                                                                               2
                          2
                                                     2
                   (y + z) (x + z)(y − x)+(z + x) (x + y)(z − y)+ (x + y) (y + z)(x
                                                                                             − z) ≥ 0 ⇔
                   33
             33
                         33
            x
           x z + y x + z y − xyz(x + y + z) ≥ 0z + y x + z y − xyz(x + y + z) ≥ 0
               x z + y x + z y − xyz(x + y + z) ≥ 0. Divide both sides by  xyz  to obtain
                 3
                             3
                       3
               x 2  +  y 2  +  z 2  ≥ x + y + z  which can be proven by the inequalities
                y    z    x
                                          2 2
                             2 2
                2 2
               xx  + y ≥ 2x,+ y ≥ 2x, yy  + z ≥ 2y,+ z ≥ 2y, zz  + x ≥ 2z+ x ≥ 2z .
                yy           zz           xx
               These inequalities have the equal sign if and only if x = y = z , that is, the original inequality
               has the equal sign if and only if  a = b = c .
                                                         |a+b|    |a|  +  |b|
                                                              ≤          1+|b| .
               3.60      a, b  are real numbers, show  1+|a+b|   1+|a|
                                                                                                        =
                                                                                                                   =
                                                        |a+b|    1+|a+b|−1          1              1        |a|+|b|      |a|       |b|
                                                                                                                              +
                                                                                                   1
                                                                                    1
                                                                                                                         |a|
                                                                                                            |a|+|b|
                                                                                                                                   |b|
                                                       1+|a+b| =
               Proof: Since |a + b| ≤|a| + |b|, we have  |a+b|  =  1+|a+b|−1  =1 −  1+|a+b| ≤ 1 −  1+|a|+|b| =   1+|a|+|b| =  1+|a|+|b| +  1+|a|+|b| ≤
                                                                                                                                         ≤
                                                                                         ≤ 1 −
                                                                  1+|a+b| =1 −
                                                      1+|a+b|     1+|a+b|        1+|a+b|        1+|a|+|b|  1+|a|+|b|  1+|a|+|b|  1+|a|+|b|
 |a+b|  1+|a+b|−1  1  1  |a|+|b|  |a|      |b|      |a|  +  |b|
 =  =1 −  ≤ 1 −  =         =          +         ≤  1+|a| +  1+|b|.
                                                    |a|
                                                           |b|
 1+|a+b|  1+|a+b|  1+|a+b|  1+|a|+|b|  1+|a|+|b|  1+|a|+|b|  1+|a|+|b|  1+|a|  1+|b|
 |a|  |b|
 +
 1+|a|  1+|b|
                                                                                        1
                                                                          y
                                                                     x
                                              2
               3.61     Given  0 <a < 1,x + y =0, show  log (a + a ) ≤ log 2+ .
                                                                                  a
                                                                  a
                                                                                        8
                                 √            x+y
                            y
                                                                                                   x+y
                       x
               Proof: a + a ≥ 2 a a =2a        2 . Since 0 <a < 1, we have  log (a + a ) ≤ log (2a x+y x+y         x+y  = log 2+   x−x 2  = log 2+ x(1 − x) ≤
                                     x y
                                                                                                                                                   1
                                                                                 x
                                                                                      y
                                                                                                    2 ) = log 2+
                                                                                                                                     2
                                                                                                                                        2
                                                                                               a
                                                                                    x
                                                                              a x
                                                                                         y
                                                                                     y
                                                                                                   2 ) = log 2+) = log 2+
                                                                          log (a +(a + a ) ≤ log (2a   2     a    x+y 2 x+y  a   x−x 2x−x    a    1  2  1
                                                                                                                      = log 2+= log 2+
                                                                            1 x+1−x 2 a ) ≤ log (2alog
                                                                                                                                      = log 2+ x(1 − x) ≤= log 2+ x(1 − x) ≤
                                                                             a
                                                                                             a
                                                                                 a
                                                                             (
                                                                       log a 2x+1−x 2 ) = log 2+  1 a       a   a  2   2    a  a   2   2    a   a  2  2
        x+y
                                                                                   ) = log 2+) = log 2+ .
                                                                               1
                                                                                            a
                                                                           1
                                           2
 y
                                                        1
 x
                                                                            (
                                                                          log
 log (a + a ) ≤ log (2a  2 ) = log 2+  x+y  = log 2+  x−x  = log 2+ x(1 − x) ≤ log 2+ ( 2 x+1−x 2  a  a  1 8  8  1

                                                                                                    8
                                  a
 a
                                                  a
                                                                               2
                                                                         a 2 a 2
                                                                                   2
    a
                   a
                                         2
                                                        2
                          2
 log  1 x+1−x 2  1
 (
 ) = log 2+
 a 2  2  a  8
               3.62      The system of inequalities
                                                √
                                                   2
                                                  x − 2x − 8 < 8 − x
                                                   2
                                                  x + ax + b< 0
               has the solution  4 ≤ x< 5, find the conditions  a  and  b  should satisfy.
                                                ⎧   2                       ⎧
                                                ⎨ x − 2x − 8 ≥ 0            ⎨ x ≤−2 or x ≥ 4
               Solution:   √  2                                                                ⇒ x ≤−2
                           x − 2x − 8 < 8 − x ⇒    8 − x> 0              ⇒     x< 8
                                                ⎩   2                  2    ⎩      36
                                                   x − 2x − 8 < (8 − x)        x<
                                                                                   7
                           36
               or  4 ≤ x ≤  7  .
                                            Download free eBooks at bookboon.com
                                                           107
   102   103   104   105   106   107   108   109   110   111   112