Page 104 - Elementary Algebra Exercise Book I
P. 104

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




               Solution: The given conditions imply that  (x + y)(x + z) = yz + x(x + y + z) ≥ 2             yz · x(x + y + z)=2
                                                      √

 (x + y)(x + z) = yz + x(x + y + z) ≥ 2  yz · x(x + y + z)=2. When  x =  2 − 1,y = z =1, the equal sign is reached in the
               above inequality, thus the minimum value of  (x + y)(x + z) is 2.

                                                              2
               3.49    Real numbers a, b, c  satisfy a + b + c =1. Show that one of |a − b|, |b − c|, |c − a|
                                                         2
                                                    2
                                   √
               is not greater than   2 .
                                    2
               Proof: Without loss of generality, we assume  a ≤ b ≤ c , and let  m  be the minimum one

               of |a − b|, |b − c|, |c − a| . Then b − a ≥ m, c − b ≥ m, c − a =(c − b) + (b − a) ≥ 2m . On

                               2          2         2       2    2   2                         2    2    2

               one hand, (a − b) + (b − c) +(c − a) = 2(a + b + c ) − 2(ab + bc + ca)=3(a + b + c ) −
                                                          2
                                                                                         2
                                                               2
                                    2
                                                      2
                                                                                              2
                                              2
                         2
                                                                                                  2
                  (a − b) + (b  2 − c) +(c − a) = 2(a + b + c ) − 2(ab + bc + ca)=3(a + b + c ) −
                     (a + b + c) ≤ 3
                                                         2
                                                                              2
                                                                                          2
                                                                                     2
                                                                                                   2
                                                                    2
               (a + b + c) ≤ 3. On the other hand, (a − b) +(b − c) +(c − a) ≥ m + m + (2m) =6m             2
                          2
                                                                                                    √
                      2          2          2     2     2        2      2             2               2
               (a − b) +(b − c) +(c − a) ≥ m + m + (2m) =6m . Hence,  6m ≤ 3 ⇒ m ≤                     .
                                                                                                     2
                                                               α    β     α+1    β+1
               3.50    Let  α, β  be real numbers, show  log (2 +2 ) ≥     2  +   2  .
                                                            2
                                   α    β     α+1   β+1                      α     β    α+β+2
               Proof: To show log (2 +2 ) ≥    2  +  2  , we only need to show 2 +2 ≥ 2   2  , we only need
                                2
               to show  2 2α  +2 α+β+1  +2 2β  ≥ 2 α+β+2 , we only need to show  2 α−β−2  +2 −1  +2 β−α−2  ≥ 1, we
                                                                                        1
                                                                                            2
                                               1
               only  need  to  show  2 α−β  +2+  α−β ≥ 4,  we  only  need  to  show  (2  α−β  α−β ) ≥ 0  which  is
                                                                                 2 −
                                             2
                                                                                      2  2
               obviously valid.
                                                       2
               3.51    Given the function  f(x) = ax − c  that satisfies −4 ≤ f(1) ≤−1, −1 ≤ f(2) ≤ 5.
               Find the range of  f(3).
                                                                                            1
                                                                                                               1
                                        2
               Solution: From f(x) = ax − c, we know f(1) = a − c, f(2) = 4a − c , thus a = [f(2) − f(1)],c = [f(2) − 4f(1)]
                                                                                            3                  3
                    1
                                                                                                          5
                                                                              1
                                                                                                 8
 1
 a = [f(2) − f(1)],c = [f(2) − 4f(1)] . Then  f(3) = 9a − c = 3[f(2) − f(1)] − [f(2) − 4f(1)] = f(2) − f(1)
 3                  3                                                         3                  3        3
 1      8       5             8              5                    8          5
 f(3) = 9a − c = 3[f(2) − f(1)] − [f(2) − 4f(1)] = f(2) − f(1). Hence,  × (−1) + (− ) × (−1) ≤ f(3) ≤  × 5+(− ) × (−4), that is, −1 ≤ f(3) ≤ 20
 3      3       3             3              3                    3          3
     −1 ≤ f(3) ≤ 20.
                                                                                           1
                                                                                       1
               3.52   Given real numbers a> 0,b > 0,c > 0 and a + b + c =1, show  + +          1  ≥ 9.
                                                                                       a   b    c
                                                                               √
               Proof 1: The conditions together with Cauchy’s Inequality imply  a+b+c  ≥  3  abc ⇒ √ 1  ≥  3  =3 .
                                                                         3               3  abc  a+b+c
                                                          1
                                                        1 + + 1
                                                                       1
               Apply Cauchy’s Inequality again to obtain  a  b  c  ≥  3 1  · ·  1  = √ 1  ≥ 3 ⇒  1  +  1  +  1  ≥ 9 .
                                                          3         a  b  c    3  abc      a   b    c
                                                                                           2
                                                                               2
                                                                                              2
                                                                                   2
                                                                                                  2
                                                                                      2
               Proof 2:  1   1  +  1     bc+ac+ab  − 9=  (a+b+c)(bc+ac+ab)−9abc  2  a c+a b+b c+ab +ac +bc −6abc  =
                                                                                           2
                                                                               2
                                                                                               2
                                                                                   2
                                                                                       2
                   1  +  1  a + + 1  b − 9= − 9=+ab  abc − 9=  (a+b+c)(bc+ac+ab)−9abc  =  a  = c+a b+b c+ab +ac +bc −6abc  =
                                    bc+ac
                                 c
                                                                abc
                                                                                          abc
                   a  a(b−c) +b(c−a) +c(a−b) 2              abc                       abc
                          2 c
                                       abc
                       b
                                 2
                           2
                    2
               a(b−c) +b(c−a) +c(a−b) 2  ≥ 0 .  ≥ 0
                              abc
                        abc
                                            Download free eBooks at bookboon.com
                                                           104
   99   100   101   102   103   104   105   106   107   108   109