Page 105 - Elementary Algebra Exercise Book I
P. 105

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




                                                                       1 2        1 2   25
               3.53     Let  a> 0,b > 0 and  a + b =1, show  (a + ) +(b + ) ≥             .
                                                                       a          b     2
                                      √      √
                                                     1         1    1  ≥ 4.
               Proof 1:  1= a + b ≥ 2 ab ⇒     ab ≤    ⇒ ab ≤    ⇒
                                                     2         4    ab
               And   (a+ ) +(b+ ) ) ≥ [ ≥ [  a+ +b+ ] = (1 ++ 1 1 + ) = (1 ++ 1 2 2  2525,
                                            1 1
                        1 2 1 2
                              1 2 1 2
                                        1 1
                                     a+ +b+
                      (a+ ) +(b+
                                            b 2 b 2
                                                  1 1
                                                             1 2 1 2
                                                                            1
                                                                   1 1
                                                            + ) = (1
                                                                             )
                                               ]
                                        a a
                              b b
                        a a
                                                                           ) ≥≥
                          2 2            2 2      4   = (1  a a  b b  4 4  abab  4 4
                                                    4
                          1 2        1 2   25
               thus  (a + ) +(b + ) ≥        .
                          a          b     2
                                                                                                                                             2
                                                                                                                                        1
                                                                                                     2
                                                                                                                                                     2
                                                                                                                                2
                                                                                                                                                             2
                                                                                           1 2
                                                                                                                        2
                                                                                                                 2
                                                                                                             2
                                                                                                                                    2
                                                                                  1 2
                                    2
               Proof 2: Let  a = sin α, b = cos α , then                     (a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
                                               2
                                                                                  a
                                                                                           b
                                                                                                                                        2
                                                                                                                                                              2
                                                                                            1
                                                                                 2
                                                                                                                                                         2
                                                                             2
                                                                                                                     1
                                                                                                                           2
                                                                                                                                        4
                                                                                                   1
                                                                                                                                               1
                                                                                     1
                                                                                                                                1
                                                                          sec α) = (1+     sin α  cos α  2  1 2  sin α cos α ) = (1+  sin 2α ) = (1+4 csc 2α) ≥
                                                                                             2 +
                                                                                                    2 ) = (1+
                                                                                                                                        2
                                                                                                                   2
                                                                                                                                               2
                                                                                                                                2
                                                                                     2
                                                                                                                        2
                                          2
                                                                          1 11
                                                                                  2
                                                                               2 2
                                                                  2 2
                                               2 2
                                                   2 2
                                                                      22
                             1 2 1 2
                                                          2 2
                                       2
                                                                                               2 2
                                                                                       2 25 2
                    1 2 1 2
                   (a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
                                                                           (1 + 4) =
               (a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
                                                                                 2
                                         2
                                                                     2 2
                                           2
                                                                    2
                      1 2
                                                                          2 2  2 1
                                                                              1
                                                                                                 2
                               1 2
                                                 2
                                                   2 2
                                                                                       2 2
                                                                                  2
                                                            2
                                                             2
                                b1 2
                      2 ) +(b+ ) = (sin α+csc
                                                      2
                                                                         2
                                                                                                  2
                       a 1 2
                 (a+
                                                                                          2
                             b
                   2 2 (a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
                    a
                                                       1 1
                                                                          4 4
                                                                                                2 2
                                        1
                                                              2 2
                                         2 2
                                                                              1
                          1
                                                                                 1 12
                                                                                           2 2
                       1 2
                                                                  1 1 2
                                      1
                              1 1 2
                                                                                                  2
                                                   2
                                                      2
                                                                                          2
                                                             2
                                                                         2
                                                             ) = (1+ +
                                         2 ) =
                      a
                sec α) =
                   (a+
                                                              ) = (1
            sec α) = (1+ (1+ b  1 b b 1 2 1  cos α α 1 2 2  2 1 1 α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
                                                                             ) = (1+4 csc 2α) ≥α+
                       1 a ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos
               2
                               2 + +
                                      2 ) = (1+ (1+
                                                                            2
                                                                              2
                                                                              ) = (1+4 csc 2α) ≥
                                                       2
                                                                          2 2
                                               1
                                                          2 2
                 2
                  2 2
                                                                                 2 2 1
                         1
                                                   sin α cos α α 2
                                      cos 1
                                                                                                  2
                                                                        sin 4
                                                         1
                                                                                             2
                                                                  2 21
                                                                                     1
                                                                                                    2
                          2 1
                                                                        sin 2α 2α4 2
                                                     2 sin α cos 1
                       2 a
                                                                                               2
                                                                     1
                             sin α sin α
                                              2 2 1
                      2
                                                                 2
              sec α) =
                1 sec α) = (1+ 2 +
                                  2 + 2 ) = (1+
                        2 (1+
                                                                                 ) = (1+4 csc 2α) ≥
                            25
                                                                 2
                                                                     1
                                                                                               2
                                                                                     1
                                                                                                    2
                                                                ) = (1+ 2 4
                  2
                                                 1
                    2 2
                                             2
                                         1
                           1
                 (1 + 4) =
                                  1
                                                                                 ) =
                                  2 +
               sec α)
                                                       sin α cos α ) = (1+
                                                                             2
            1 (1 + 4) == (1+    sin α cos α 2 ) = (1+ 2  2 1 2  2 α ) = (1+  sin 2α ) = (1+4 csc 2α) ≥
                                       cos α ) = (1+
                         2
                              sin α
                                               2
                                                                    2
                                                                           sin 2α   2
                                                     sin α cos
                         25 2
                                                                     2
                                                 2
                                                                                     2 (1+4 csc 2α) ≥
                          25
                                                                             2
                                                         2
                                                              2
                                          2
                2 1
                      2
                        2
            2  1 (1 + 4) = 2 2  2 25  sin α  cos α  2  sin α cos α   2     sin 2α    2
                             2 .
                        2
              2  1 (1 + 4) = 25
                           2
                2 (1 + 4) =
                2            2
               3.54   Let a,b,c,d,m,n  be positive real numbers,
                    √      √          √
                                                        d
               P =    ab +   cd, Q =    ma + nc    b  + . Compare P  and  Q .
                                                   m    n
                                          √
                                                                        d
                                                    2
                           2
               Solution:  P = ab + cd +2 abcd, Q =(ma + nc)(        b  + )= ab + cd +   nbc  +  mad  . Since
                                                                   m    n               m      n
                                           √
                                                          2
                                                               2
               nbc  +  mad  ≥ 2  nbc  ·  mad  =2 abcd , then P ≤ Q . Because P, Q  are positive, we have P ≤ Q .
                m     n        m    n
               3.55     Show the inequality  (a + b) ≤ 128(a + b ).
                                                      8
                                                                8
                                                                     8
               Proof:  (a − b) ≥ 0 ⇒ a + b ≥ 2ab. Similarly we have  a + b ≥ 2a b ,a + b ≥ 2a b .
                             2
                                                                                           8
                                                                                      2 2
                                                                                                8
                                                                               4
                                                                          4
                                        2
                                                                                                      4 4
                                            2
               Add  a + b ,a + b ,a + b  to the above three inequalities respectively to obtain
                                      8
                      2
                              4
                           2
                                           8
                                   4
               2(a + b ) ≥ (a + b) , 2(a + b ) ≥ (a + b ) , 2(a + b ) ≥ (a + b ) ) . The last inequality leads
                                  22
                                            4 4
                  22
                                                                   8 8
                       22
                                                        2
                                                       2 2 2
                                                              8 8
                                                   2 2
                                                                               4
                                                                              4 2 2
                                                                          4 4
                                        44
                2(a + b ) ≥ (a + b) , 2(a + b ) ≥ (a + b ) , 2(a + b ) ≥ (a + b

                                                                              2 2
                                                                                                  2 2
                         8  8  8  8    4  4  4 2 4 2    4 4  4 4 2 2     22   2 2 2 2     2 2  2 2  2 2

                       128(a + b ) ≥ 64(a + b ) = 16[2(a + b )] ≥ 16[(a + b ) ] = {[2(a + b )] } ≥
               to  128(a + b ) ≥ 64(a + b ) = 16[2(a + b )] ≥ 16[(a + b ) ] = {[2(a + b )] } ≥
                                                                                               2
                                                                                                  2 2
                                                                         2
                                                        4
                                                                              2 2 2
                                       4
                                                               2
                                                             4
                                            4 2
                             8
                         8
                                                                                          2
                   128(a + b
                        2 2 2 2 2 2 ) ≥ 64(a + b ) = 16[2(a + b )] ≥ 16[(a + b ) ] = {[2(a + b )] } ≥
                   {[(a + b) ] } =(a
                                       8
               {[(a + b) ] } =(a + b) + b) 8
               {[(a + b) ] } =(a + b) .
                        2 2 2
                                       8
                                                       2
               3.56      Given the function  f(x − 3) = log           x 2 2  (a> 0,a  =1 ) that satisfies
                                                                   a 6−x
               f(x) ≥ log 2x . Find the domain of the function  f(x) .
                          a
                                                                                                  3+t
               Solution: Let x − 3= t , then x = 3+ t . Substitute it into the function:  f(t) = log a 3−t , thus
                             2
                                              2
                f(x) = log  3+x  . Then the inequality  f(x) ≥ log 2x  is equivalent to log  3+x  ≥ log 2x .
                          a 3−x                                a                      a 3−x      a
                               ⎧
                                  3+x  > 0
                               ⎨  3−x
               If  a> 1, then     3+x  ≥ 2x ⇒ x ∈ (0, 1) ∪ [− , 3).
                                                               3
                                  3−x                          2
                               ⎩
                                  x> 0
                                   ⎧
                                      3+x  >
                                          < 0
                                   ⎨  3−x
               If  0 <a < 1, then     3+x  ≤ 2x ⇒ x ∈ [1, ) .
                                                            3
                                      3−x                   2
                                   ⎩
                                      x> 0
                                            Download free eBooks at bookboon.com
                                                           105
   100   101   102   103   104   105   106   107   108   109   110