Page 111 - Elementary Algebra Exercise Book I
P. 111

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




                                                                                                                       4
                                                                                                 s
                                                                                                             t
                                                                                                                  2
                                                                                            2
                                                                                                       2
               3.70     Let r,s,t satisfy 1 ≤ r ≤ s ≤ t ≤ 4 , find the minimum value of (r − 1) +( − 1) +( − 1) +( − 1)      2
                                                                                                 t           s         r
     s
                           4
                t
 (r − 1) +( − 1) +( − 1) +( − 1) .
                      2
 2
           2
                                 2
     t          s          r
                                                                           t
                                                                     s
                                                                                 4
                                            t
                                   s
                                                     4
                                                                                                      s
                                                 2
                                                          2
                                                                                     2
                                                                                                 2
                              2
                                        2
               Solution: (r−1) +( −1) +( −1) +( −1) ≥ [        (r−1)+( −1)+( −1)+( −1)  ] ⇒ 4[(r−1) +( −
                                                                           s
                                                                     t
                                                                                 r
                                                                       t
                                                                             4
                                                                 s
                                                           (r−1)+( −1)+( −1)+( −1)
                                                                                  2
                                   t 2
                                       t
                                                                                                  s
                             s
                                            s 2
                                                 4
                                                     r2
                                                                                              2
                   (r−1) 2  t +( −1) +( −1) +( −1) ≥ [           t  t  2  s  2  4  r  ] ⇒ 4[(r  s −1) +( − t  2
                                                          s
                                           2
                                                                                              t
                                 2
                                     4
                       2
                                                                                 2
                                                                                                  4
                              t
                                                 r
                                                                                                   t
                                       s
                     1) +( −1) +( −1) ] ≥ [(r −1)+( −1)+( −1)+( −1)] = [(r + + + )−4]
               1) +( −1) +( −1) ] ≥ [(r −1)+( −1)+( −1)+( −1)] = [(r + + + )−4] .
                                                                                                     2
                 2
                           s 2
                                                                                                  r
                                4
                      t
                                                                                              s 4
                                     r 2
                                                                  s
                                                                                       s
                                                          t
                                                                       4
                                                     s
                                                                              2
                                                              t
                                                                           r
                                                                                          t t
                      s         r                    t        s        r               t   s  r
                                                                                √
                                                                        t
                                                    s
                                                                      s
                                                        t
                                                                                 4
               Cauchy’s Inequality implies that  r + + +   4  ≥ 4  4  r · · ·  4  =4 4, thus
                                                    t   s   r         t  s  r
                                                                 √ √
                                               2 2
                                   2 2
                        2 2
                                                                                                2 2
                                                    4 4
                                                                                     2 2
                                                                         2 2
                                                                     √√
                                                                                          s s
                                                          2 2
                                                                  4 4
               4[(  4[(r − 1)4[(r − 1)  s s t t +( − 1) +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) ++( −  22 t t s s +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) +

                                                  22
                                                              22
                                                                             22
                                            t t
                                                                                              ss
                                                                                         22
                                 ss
                                                       44
               4[(r − 1) +( − 1) +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) +r − 1) +( − 1) +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) + 22
                                                                                                     2
                            2
                                                                     4 4
                                    √ √1)
                                                    r r
                                                                                          t t
                                 t t
                        4 4
             t t
                                        √√
                                            2 2
                              2 2
                   2 2
           ( ( − 1) +( − 1) ≥ 4( 2 − 1)− 1) +( − 1) ≥ 4( 2 − 1) ss  22  rr                    t t
                                  22
                 t t
             s s ( − 1) +( − 1) ≥ 4( 2 − 1)− 1) +( − 1) ≥ 4( 2 − 1) . The equal sign is obtained if and only if
                       22
                            44
                (
                 ss     r r  rr
                    √              √
               r =    2,s =2,t =2 2. Hence, the minimum value of
                                                              √
               (r − 1) +( − 1) +( − 1) +( − 1)  is  4( 2 − 1) .
                                                                      2
                           s
                                                 4
                                      t
                                 2
                                                       2
                      2
                                            2
                           t          s          r
               3.71      Real numbers  a 1 ,a 2 satisfy  a + a ≤ 1, show that for any real numbers  b 1 ,b 2,
                                                         2
                                                              2
                                                              2
                                                         1
               (a 1 b 1 + a 2 b 2 − 1) ≥ (a + a − 1)(b + b − 1) always holds.
                                2
                                                        2
                                            2
                                                    2
                                       2
                                                        2
                                                    1
                                            2
                                       1
               Proof: If b + b − 1 > 0, since a + a ≤ 1, we have  (a + a − 1)(b + b − 1) ≤ 0, then
                                                                                         2
                                                                                     2
                                                                        2
                                                      2
                          2
                                                 2
                                                                             2
                              2
                                                                                         2
                                                 1
                                                      2
                          1
                                                                                     1
                                                                        1
                                                                             2
                              2
               obviously (a 1 b 1 + a 2 b 2 − 1) ≥ (a + a − 1)(b + b − 1) . If b + b − 1 ≤ 0, Mean Inequality
                                                             2
                                                     2
                                                                           2
                                                                                2
                                                2
                                          2
                                                                  2
                                                1
                                                     2
                                                                  2
                                                                           1
                                                             1
                                                                                2
                                   2
                                                 2
                                                                                                                                       2
                                                                                                                              2
                                                                                                                                          2
                                                                                                                                 2
                                  a +b 2        a +b 2                    1  2    2    2    2                             (1−a −a )+(1−b −b )
                                                                                                                                 2
                                                                                                                            2
                                                                                                                              1 2
                                                                                                                                      2
                                                                                                                                       1 2

               implies that a 1 b 1 ≤  1  1 ,a 2 b 2 ≤  2  2 . Thus a 1 b 1 + a 2 b 2 ≤ (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥ (1−a −a )+(1−b −b ) 2  ⇒
                                                                                 2
                                                                                           2
                                                                           2
                                                                        1
                                                                                      2
                                                                             1
                                                                                       1
                                                                                            2
                                                                                  2
                                    2             2      a 1 b 1 + a 2 b 2 ≤ 1  2 (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥ (1−a −a )+(1−b −b ) 2  ⇒
                                                                                                                               2
                                                                                                                                  2 2
                                                                                                                                      1 2
                                                                                                                           2
                                                                                                                            1 2
                                                                          2
                                                                               2
                                                                                         2
                                                                                    2
                                                                                 2 2
                                                                           1
                                                                                    2 1
                                                                                           2 2
                                                                                                                                    1
                                                                                              2
                                                        a 1 b 1 + a 2 b 2 ≤  2 2 (a + a + b + b ) ≤ 1 ⇒ 1 1− a 1 b 1 − a 2 b 2 ≥  1  2 2  2  2 2  2  ⇒ 2
                                                                                                                  2 2
                                                                              (1−a −a )+(1−b −b ) 2
                                                                                                             2
                                                                                               ] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
                                                                                2 2
                                                                                    2
                                                                          1
                                                                                         2 2
                                                                                              2
                                                                                 1 2 1
                                                                                                                               2
                                                                       2
                                                                                           1 2
                                           2
                                  2
                                     2
                                 2
                                            2
                                    2
                               (1−a −a )+(1−b −b ) )
                                                                       2
                                                                                                                                 2
                                                                                                                  2 2
                                                                                                                2
                                                                                                                            2
                                                                                                                                   2 2
                                                                                                                                          2
                                                                                                           2
                                                                                                                              1
                                                                                                             1
 1 1 2 2  2 2  2 2  2 2       (1−a −a )+(1−b −b 2 2  2 2  (1 − a 1 b 1 − a 2 b 2 ) ≥ [ (1−a −a )+(1−b −b ) 2  1  2 [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
                                                                                                                                            1
                                                                                            2
                                                 ⇒
                                                                                   2
                                           1
                                                                              2
                                    2
                                  1
                                                                                         1 2
                                            1
                                     2
                                                                                1 2
                                                                                      2 2
                                 1
 a 1 b 1 + a 2 b 2 ≤ (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥
 a 1 b 1 + a 2 b 2 ≤ (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥  ⇒  (1 − a 1 b 1 − a 2 b 2 ) ≥ [ (1−a −a )+(1−b −b ) 2 ] ≥ 1  1   2  2  2 2  2  1  2  2 2  2  1
                                                                     2
                                                                2
                                                                     2
                                                                                 2
                                                                                                   2
                                                                                        1
                                                                              1
                                                        2
                                                                                           2
                                                       a − 1)(b + b − 1)
 2 2 1 1  2 2 2 2  2  2  1 1  2 2 2 2 2  2  2 2     (1 − a 1 b 1 − a 2 b 2 2 ) ≥ [  2  2    ] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
                                                                                                                           1
                                                                                                                                2
                                                                                                                                         1
                                                                                                               2
                                                               2
                                                       2
                                                                                                          1
                                                                                                  2
                                                                     2
                                                        2
                                                      a − 1)(b + b − 1)
                                                                1
 2
                                                2
                2
                 2
                                               2
        1
         1
 (1−a −a )+(1−b −b ) 2
                                  2
                                 2
                                       2 2
                      2 2
 2
                                      2 2
                      2 2
 (1 − a 1 b 1 − a 2 b 2 ) ≥ [ [
   ] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
  2
 1
                                                                  2
                                                             2
                                                     2
 1
 1
 1
 2
 2
                                                               1
                                                                    2
                                                       2
 (1 − a 1 b 1 − a 2 b 2 ) ≥  (1−a −a )+(1−b −b ) 2 2 ] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a + a − 1)(b + b − 1) .

                                       2
                                                1
                                               1
                      2
                 1
                1
                      2
                                      2
                                  1
                                 1
        2
 2
 2
                                                     2
                                                                  2
         2
                                                             1
 2
 2
 2
 2
 2
 2
 a − 1)(b + b − 1)
 a − 1)(b + b − 1)
 1
 2
 2
 2
 2
 1
                                                                           1 a log 2
                                                                                      1 x(x−a+1)
               3.72      Let  A = {x|1+         1   −   1  < 0}; B = {x|( )     3  < ( )        ,a ∈ R} ,
                                              log x   log x                3          2
                                                 3
                                                        5
               find the range of  a  such that  A ⊆ B.
                                      1
                                                                                3
                                                                                          −1
                               1
               Solution:  1+  log 3 x  −  log 5 x  < 0 ⇒ 1 + log 3 − 2 log 5 < 0 ⇒ log x 25  < log x . Thus  x> 1,
                                                       x
                                                                 x
                                                                                       x
                    1
                                                                                     1 x(x−a+1)
                                                                        1 a log 2
               then  >   3 , then 1 <x<  25 . Hence, A = {x|1 < x<  25 }.  ( )  3  < ( )             log 2 −a  < 2 −x(x−a+1)  ⇒ 2 −a  < 2 −x(x−a+1)  ⇒−a<
                                                                                                       3
                    x    25              3                          3 1 a log 2  1 x(x−a+1)     ⇒ 3 −a       −x(x−a+1)     −a      −x(x−a+1)
                                                                        3
                                                                                     2
                                                                                                 log 2
                                                                   ( )   3   < ( )          ⇒ 3    3    < 2            ⇒ 2     < 2           ⇒−a<
                                                                    −x(x − a + 1) ⇒ (x − a)(x + 1) < 0
                                                                                 2
                                                                    3

 1 a log 2
 1 x(x−a+1)

 ( )  3  < ( )  ⇒ 3 log 2 −a  < 2 −x(x−a+1)  ⇒ 2 −a  < 2 −x(x−a+1)  ⇒−a< −x(x − a + 1) ⇒ (x − a)(x + 1) < 0 ( ).
          3
 3  2
 −x(x − a + 1) ⇒ (x − a)(x + 1) < 0
               When  a = −1, ( ) has no solution.
               When  a> −1, ( ) has the solution  −1 < x <a .
               When  a< −1, ( ) has the solution  a<x< −1.
                           ⎧
                           ⎨ φ (a = −1)
                                                                                              25
               Hence,  B =    {x|− 1 <x <a} (a> −1) from which we know that when  a ≥         3  ,  A ⊆ B .
                              {x|a< x< −1} (a< −1)
                           ⎩
                                            Download free eBooks at bookboon.com
                                                            111
   106   107   108   109   110   111   112   113   114   115   116