Page 115 - Elementary Algebra Exercise Book I
P. 115

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities



                                                         √           √                  √           √
               Proof 5: Since x 1 ,x 2 , ··· ,x n > 0, let  a 1 =  x 2 ,a 2 =  x 3 , ··· ,a n−1 =  x n ,a n =   √ ,b 2 = x 2  √ ,b 3 =
                                                                                                                 x 1
                                                                                   √
                                                                √
                                                                                                                            x 2
                                                                                                √
                                                    √
                                                                                                                 x 2 =
                                                                                                                            x 3 =
                                             a 1 =    x 2 ,a 2 =  x 3 , ··· ,a n−1 =  x n ,a n =  x 1 ,b 1    =  √ ,b 2  √ ,b 3
                                                                                                      x 1 ,b 1 = x 1
                                                x 3             x n−1     x n                                x 2         x 3
 √  √  √  √                                    √ , ··· ,b n−1 = √   ,b n = √
                                                          x n−1
                                          x 3
 a 1 =  x 2 ,a 2 =  x 3 , ··· ,a n−1 =  x n ,a n =  x 1 ,b 1 =  √ ,b 2 =  √ ,b 3 =  √ , ··· x 4 ,b n−1 = √  ,b n x n = √ x n  . Cauchy Inequality implies that
                               x 2
                   x 1
                                                                           x 1
                    x 2        x 3         x 4              x n       x 1
 x 3  x n−1  x n
 √ , ··· ,b n−1 = √  ,b n = √                                                              √    2   √    2        √    2   √     2       2        2        x n−1 2       2
                                                                                                                                                                     x n
 x 4  x n  x 1   2    2         2   2    2         2                            2        √        √              √        √           x 1      x 2              ) +( √ ) ] ≥
               (a + a + ··· + a )(b + b + ··· + b ) ≥ (a 1 b 1 + a 2 b 2 + ··· + a n b n ) , then  [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √ ) +···+( √     2
                                                                                                                               2
                                                                                              2
                                                                                                                                                 2
                                                                                                                      2
                                                                                                        2
                                                                                                                                                          x n−1 2
                                                                                                                                        2
                                                                                        √
                                                                                                                √
                                                                                                                                                                    x n
                                                                                                                                             x 2
                                                                                                  √
                                                                                                                                    x 1
                                                                                                                         √
                 1    2         n   1    2         n                                    [( x 2 ) +( x 3 ) 2    +···+( x n ) +( x 1 ) ]·[( √ x 1  x 2 ) +( √ ) +···+( √  x n ) +( √ ) ] ≥
                                                                                                                                                         x n−1 2
                                                                                              2
                                                                                                                                               x 3 2
                                                                                                                     2
                                                                                                                               2
                                                                                                                                                                      x 1 2
                                                                                                                                       2
                                                                                                                                            x 2
                                                                                                                                                                   x n
                                                                                                                                                                     2 x 1) ] ≥
                                                                                      √ [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √ ) +···+( √    x n) +( √ x x 1  x 2
                                                                                                 √
                                                                                                                                              x 3
                                                                                                                             √
                                                                                                                                     x 2
                                                                                                                 √
                                                                                                                                     2
                                                                                                                      x n−1
 √       √    2        √         √    2        2       2         x n−1 2      2      √     √ x 1  + √  x 3 x 2 √ x 2  + ··· + √  x n x n−1  + √  x 1 x n x n x 2  x 3  x n  2 2  1  + x 2 2  2  +
                                                                                                                                 √ ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x
                                                                                                                      √
                                                                                                                                    2
                                                                                    √
                                                                           x n
                                                                                     [ x 2 x 1
                                           x 1

                                                    x 2

                                                                                                                    x
                             2 √ √
     2 √ √
 √ √
                      √ √
                                                                                                                                   2
                                                                                                                     √
                                                                                                    √
                                                                                                                                √
                                                                                         √
                                          x
                                                  x
 [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √ ) +···+( √    ) +( √ ) ] ≥ [ x 2 x 1  x 2 + √  x 3 x 2  x 3 + ··· + √  x n n−1 x n + √  x 1 x n  x 1 ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x 1 1 x 2 + x 2 2 x 3 +
                                                                         x
    2 2
             2 2
                                                                             2 2
                                             2 2
                                                      2 2
                                                               x n−1 2 2
                           2 2
                                     2 2
                                                               x n−1
                                                    x 3 ) +···+(
                                          x 1
                                                                         x n n
                                                  x 2 2
 [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ 1  x 2 ) +( √ ) +···+( √ √  x n ) +( √ ) ] ≥ [ x 2  √  x 2+  x 3  √  x 3+ ··· +  x n  √  x n +  x 1  √  x 1] ⇒ (x 2 + x 3 + ··· + x n + x 1 )(  x 2+  x 3+
                                                                                            2
                                                                           x 1 ) ] ≥
 [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √
                                                                                                    2
                                                                                           x
                                                                   ) +( √
                                                                                                    n
                                                                                                     ≥ (x 1 + x 2 + ··· + x n−1 + x n )
                                                   x 3 3
                                          x 2 2
                                                                 x n n
 √    √               √           √       x        x             x       x x x  x 2  ··· + x x 2 2  n−1  + x 2 x x 3  x n       x 1  2                            x 2  x 3
                                                                          2 1 1
                                          2
                               +
                                       x n
                     √
     √
 √ √  √ x 1  + √  √ x 2  + ··· + √  x n−1 √ √  √ ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x x 2 2  1  + x x 2 2  2  x 2 n−1  2 n x 1 ≥ (x 1 + x 2 + ··· + x n−1 + x n ) 2 2
                                                                                            x n +x
          x
                                         2 2

                           √
                                      x
                                                                                 + ··· + n−1
                        x n n−1
                                                                                                 n
                                                                               +
 [ x 2 x 1 1
 [ [ x 2 x 2  √ √ x  x 2 + +  x 3 x 3 x 3 x 2 2 x 3 + ··· + +  x n x n  x x n−1 x n+ +  x 1 x 1 x 1 x n n x 1 ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( )(  1 1 x 2 + +  2 2 x 3 +   ··· +  x n +  x 1 ≥ (x 1 + x 2 + ··· + x n−1 + x n )
             + ···
                          √ √
         √ √
                                     √ √ ] ⇒ (x 2 + x 3 + ··· + x n + x 1
 x x 2 2 2  x 2  x         x          x                                 x    x            x n    x 1
                           x n n
                                      x 1 1
           x 3 3
                                                                        x 2 2
                                                                             x 3 3
 x
  n−1
 ··· + x x 2 2 n−1  + x x 2 2  n  ≥ (x 1 + x 2 + ··· + x n−1 + x n ) 2 2  2
 ··· + +  n−1  n n x 1≥ (x 1 + x 2 + ··· + x n−1 + x n ) ) . Divide both sides by  x 1 + x 2 + ··· + x n−1 + x n ≥ 0 to obtain
  x n + +
 ···
         ≥ (x 1 + x 2 + ··· + x n−1 + x n
 x     x
 x n n
       x 1 1
               x 2 1  +  x 2 2  + ··· +  x 2 n−1  +  x n 2            .
               x 2   x 3        x n    x 1  ≥ x 1 + x 2 + ··· + x n−1 + x n
                   We will turn your CV into
                   an opportunity of a lifetime
                 Do you like cars? Would you like to be a part of a successful brand?  Send us your CV on
                 We will appreciate and reward both your enthusiasm and talent.    www.employerforlife.com
                 Send us your CV. You will be surprised where it can take you.
                                            Download free eBooks at bookboon.com  Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                            115
                                                            115
   110   111   112   113   114   115   116   117   118   119   120