Page 19 - Elementary Algebra Exercise Book I
P. 19
ELEMENTARY ALGEBRA EXERCISE BOOK I reAl numBers
1 1 1 1
1.48 Given + + = =1, show x =1 or y =1 or z =1.
x y z x + y + z
1 1 1
Proof: + + =1 ⇒ xy + xz + yz = xyz (i);
x y z
1 =1 ⇒ x + y + z =1 ⇒ x =1 − y − z (ii).
x+y+z
Substitute (ii) into (i): (1 − y − z)y + (1 − y − z)z + yz = (1 − y − z)yz ⇒ (z − 1)(y + z)(y − 1) = 0
(iii). (ii) is equivalent to y + z =1 − x and substitute it into (iii): (z − 1)(1 − x)(y − 1) = 0,
therefore x =1 or y =1 or z =1.
2
1.49 Show 1+2+2 + ··· +2 5n−1 is divisible by 31.
Proof: 1 + 2 + 2 + ··· +2 5n−1 = 1 − 2 5n =2 5n − 1 = 32 − 1 = (31 + 1) − 1=
2
n
n
1 − 2
0
1
0
1
n
n
C 31 + C 31 n−1 + ··· + C n n−1 31 + C − 1 = 31(C 31 n−1 + C 31 n−2 + ··· + C n n−1 ) which is
n
n
n
n
n
obviously divisible by 31.
a b
1.50 The real numbers a, b, c satisfy = , and x, y are mean values of a, b and b, c
b c
a c
respectively. Show + =2 .
x y
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
19
19

