Page 15 - Elementary Algebra Exercise Book I
P. 15

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




                                        2
                           2
                                                                                                                        2
                                                                      2
                                                                                   2
                                                                                                         2
               Solution: 5x − 6xy +2y +2x − 2y +3 = (x − y + 1) + (2x − y) +2 . Since (x − y + 1) ≥ 0, (2x − y) ≥ 0

  (x − y + 1) ≥ 0, (2x − y) ≥ 0,  the minimum  value of  5x − 6xy +2y +2x − 2y +3  is 2,  and  the
                                                                            2
                                                               2
                            2
              2
               associated values of  x, y  are  x =1,y =2 (solved from  x − y +1 = 0, 2x − y =0).
               1.34    Factoring  x + x + x +2.
                                    4
                                              2
                                         3
                                 3
                                                         2
                             4
                                     2
                                              2
               Solution: Let  x +x +x +2 = (x +ax+1)(x +bx+2) = x +(a+b)x +(ab+3)x +(2a+b)x+2,
                                                                                           2
                                                                                3
                                                                      4
                                                                                                                                      3
                                                                                                                                            2
                                                                                                                                 4
               then equaling the corresponding coefficients to obtain  a + b =1, ab +3 = 1, 2a + b =0 ⇒ a = −1,b =2 ⇒ x + x + x +2 =
                                                                                                                               4
                                                                                                                                    3
                                                                                                                                          2
                                                              a + b =1, ab +3 = 1, 2a + b =0 ⇒              a = −1,b =2 ⇒ x + x + x +2 =
                                                                           2
                                                               2
                                                             (x − x + 1)(x +2x + 2)
 a + b =1, ab +3 = 1, 2a + b =0 ⇒ a = −1,b =2 ⇒ x + x + x +2 = (x − x + 1)(x +2x + 2).
                                                             2
                                                                         2
                                            3
                                                 2
                                      4

 2
 2
 (x − x + 1)(x +2x + 2)
               1.35 Let a, b, c are lengths of three sides of a triangle, and they satisfy a − 16b − c +6ab + 10bc =0 ,
                                                                                     2
                                                                              2
                                                                                         2
               show  a + c =2b .
                                                               2
                                                    2
                                                                      2
                                                                                            2
                                                                                2
                                                                                                       2
                       2
                              2
                                  2
               Proof: a −16b −c +6ab+10bc = a +6ab+9b −25b +10bc−c =(a+3b) −(5b−c) =
                                                            2
                                                                   2
                                                                                                    2
                                                                                         2
                           2
                    2
                               2
                                                                              2
                                                 2
                   a −16b −c +6ab+10bc = a +6ab+9b −25b +10bc−c =(a+3b) −(5b−c) =
                  (a +3b − 5b + c)(a +3b +5b − c) =(a − 2b + c)(a +8b − c) =0
               (a +3b − 5b + c)(a +3b +5b − c) =(a − 2b + c)(a +8b − c) =0. Since  a, b, c  represent
               lengths of three sides of a triangle,  a +8b − c> 0, thus  a − 2b + c =0 ⇒ a + c =2b .
                                                           1   1    3
               1.36     x, y  are prime numbers,  x = yz ,   +    =   , find the value of  x +5y +2z .
                                                           x   y    z
                         1   1    3
               Solution:   +   =    ⇒ yz + xz =3xy . Since x = yz, we have x + xz =3xy . Since x  =0,
                         x   y    z
               we have 1+ z =3y. Since y, z are prime numbers, the only possibility is y =2,z =5,x =2 × 5 = 10 .
                                                                                                          
               Hence, x +5y +2z = 10 + 5 × 2+2 × 5 = 30.
                              a + b     b + c      c + a
               1.37   Given         =          =           where a, b, c  are distinct, show 8a +9b +5c =0.
                              a − b   2(b − c)    3(c − a)
                          a + b      b + c      c + a
               Proof: Let       =           =           = k , then a + b = k(a − b) (i), b + c =2k(b − c)
                          a − b    2(b − c)    3(c − a)
               (ii),  c + a =3k(c − a) (iii).  (i) × 6 + (ii) × 3 + (iii) × 2 ⇒ 8a +9b +5c =0.
                                                               y
               1.38   The positive integers  x,y,z  satisfy  x,y,z = 11,  x,y,z + = 14, and  x + y  = z , find a
                                                                           x
                                                             +
                                                               z           z
               positive integer for   x + y  if possible.
                                     z
                                x + y                                   x + y
               Solution: Since         is a positive integer, we can let      = k  where  k  is a positive
                                  z                                       z
                                                                          x
                                                          y
                                                        +
               integer, then x + y = k  (i). The sum of x,y,z = 11 and  x,y,z + = 14 leads to x,y,z +  x+y  = 25
                                                                                           +y
                                                          z               z                       z
               (ii). Substitute (i) into (ii): kz+k = 25 ⇒ k =  25  . Therefore, z =4 or  24. However when
                                                              z+1
                                                                                     x + y
               z = 24,  k =1  which violates  x + y  = z . Hence,  z =4,k =5 , then        =5.
                                                                                       z
                                            Download free eBooks at bookboon.com
                                                            15
   10   11   12   13   14   15   16   17   18   19   20