Page 17 - Elementary Algebra Exercise Book I
P. 17

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               Hence,  xy  has the maximum value  6 and the minimum value  −8.

               1.41     If the real numbers  a, b, c  satisfy  a + b + c =0, abc =1, show one of  a, b, c

               should be greater than  3/2.


               Proof: Since  a, b, c  are real numbers and  abc =1, we have at least one of  a, b, c  is greater
               than zero. Without loss of generality, let  c> 0.


                                                                                a+b    2    a−b    2
                                                                  1
               a + b + c =0 ⇒ a + b = −c  (i); abc  =1 ⇒ ab =  (ii);  ab =           −         (iii).
                                                                  c             2         2
                                                                                         3
                                         1    c 2    a − b    2    a − b    2  c 2  1   c − 4
               Substitute (i),(ii) into (iii):  =  −          ⇒            =     −    =        ≥ 0, which
                                         c    4        2             2         4    c     4c
                                                                 √
                                             3                   3     3          3
               together with  c> 0 implies  c ≥ 4. Hence,  c ≥     4=    32/8 >     27/8=3/2.
               1.42    Given m + n + p = 30 , 3m + n − p = 50 , m, n, p are positive, and x =5m +4n +2p,
                                                                                                          
               find the range of  x .


               Solution: (3m + n + p) − (m + n + p) = 50 − 30 ⇒ m − p = 10 ⇒ m = 10 + p> 10 since
                p> 0.

                                                               n                     n
               (3m + n + p) + (m + n + p) = 50 + 30 ⇒ m +         = 20 ⇒ m = 20 −      < 20 since  n> 0.
                                                                2                    2
               n + p = 30 − m ⇒ 10 <n + p< 20.

               Hence, x =5m+4n+2p = (4m+2n)+(m+n+p)+n+p = 80+30+n+p = 110+n+p ∈
                   x =5m+4n+2p = (4m+2n)+(m+n+p)+n+p = 80+30+n+p = 110+n+p ∈
                    (120, 130)
               (120, 130).
                                                                                           √
                                                                                 2
               1.43    Given a, b, c  are real numbers and satisfy a + b =4, 2c − ab =4 3c − 10, find
               the values of  a, b, c .

                                                                                        2           2
                                       √                    √                                a − b
                                                                          2
                           2
                                                                                 a + b
                                                      2
                                                                             2
                                                                                         2
                                                                    a + b
               Solution:  2c − ab =4 3c − 10 ⇒ 2c − 4 3c + 10 = ab = a − b           2   −            =
                                                                                   a − b
                                                                       a + b
                                                 √ √
                              √ √
                                            2
                    2
                  2c − ab =4 3c − 10 ⇒ 2c − 4 3c + 10 = ab =                −  −   2   =   =   2
                                              2
                    2
                  2c − ab =4 3c − 10 ⇒ 2c − 4 3c + 10 = ab =
                                                                                   2
                           2           2               2              2  2       2   2
                                                                                                 √
                 4 4  −  a − b − b  =4 −  a − b  ⇒ 2c −4 3c +6+  a − b  =0 ⇒ 2(c − 3) + 2            2
                                                             2
                    2   2  4    2   2  a − b    2   2  a − b √   √    2   2  a − b √
                                        a − b
                                                                                     =0 ⇒ 2(c − 3) +
                                                        ⇒ 2c −4 3c +6+
                                                                   a − b
                                                        √
                                                                                      2 √
                                                  2
                                        =4 −

                         a −
                                                    2
                                  2 −
                 2
                 2   −   2 2  2 2    2  =4  2  2  ⇒ 2 2c −4 3c +6+  2  2   =0  2 ⇒ 2(c − 3) +

                 a − b  2
                         a − b    √        √
                 a − b  =0 ⇒ c =   √         3,a = b =2
                                    3,a =
                                =0 ⇒ c = b =2
                          2
                   2     =0 ⇒ c =    3,a = b =2.
                   2
                                                                       √
               1.44   x  is a real number, find the minimum value of x −  x − 1 and its associated x  value.
                                            Download free eBooks at bookboon.com
                                                            17
   12   13   14   15   16   17   18   19   20   21   22