Page 20 - Elementary Algebra Exercise Book I
P. 20

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



                      a    b      a        b
               Proof:   =    ⇒        =       . Since  x, y  =  a+b ,y =  b+c  ,
                      b    c    a + b    b + c              2        2
                        a    c        a           c         2a       2c      2b       2c
               we have    +    =            +           =        +       =        +       =2.
                        x    y    (a + b)/2   (b + c)/2    a + b    b + c   b + c   b + c
                                                    2012          2012         2012
               1.51    Given  abc =1, evaluate              +             +            .
                                                 1+ a + ab     1+ b + bc    1+ c + ca


               Solution:        2012    +     2012    +    2012
                             1+ a + ab     1+ b + bc    1+ c + ca

                                       1             1              1
                         = 2012              +               +
                                   1+ a +  1    1+  1  +  1  c  1+ c + ca
                                        c  c        ac   ac        1
                                                    ac
                           = 2012             +            +               = 2012 .
                                   c + ac +1    ac +1+ c      1+ c + ca

                                7
                                     6
               1.52    Given  x + x + x = −1, evaluate  x    2000  + x 2001  + ··· + x 2012 .
               Solution: x + x + x = −1 ⇒ x (x + 1) + (x + 1) = 0 ⇒ (x + 1)(x + 1) = 0 ⇒ x = −1  since
                          7
                                               6
                                                                                 6
                               6
                 6
               x +1 > 0. Hence, x   2000  + x 2001  + ··· + x 2012  = 1+ 1+ ··· +1 + (−1) + (−1) + ··· +(−1) =1.


                                                                 seven 1 s            six (−1) s


                                                                     1       1        1
               1.53     Given  a<b< c , determine  ±  sign of            +       +       .
                                                                   a − b    b − c   c − a
               Solution: Let a − b = x, b − c = y, c − a = z. Since a<b< c , we have x< 0,y < 0,z > 0.
                                                                      2
                x + y + z = a − b + b − c + c − a =0 ⇒ (x + y + z) =0 ⇒ 2(xy + yz + zx)=
                2 x + y +
                          2z = a − b + b − c + c − a =0 ⇒ (x + y + z) =0 ⇒ 2(xy + yz + zx)=
                     2
            −(x + y + z ) ⇒ xy + yz + zx < 0                            2
               −(x + y + z ) ⇒ xy + yz + zx < 0. Therefore
                             2
                        2
                   2
                 1      1      1     1  1   1   yz + zx + xy   , that is,   1     1      1   is negative.
                    +      +      =   +   +   =             < 0               +      +
               a − b  b − c  c − a  x   y   z       xyz                  a − b  b − c  c − a
               1.54    Factor  (a + b − 2ab)(a − 2+ b) + (1 − ab) .
                                                                  2
               Solution: Let  a + b = x, ab = y , then

                                                                                    2
                                                                               2
                                                   2
                   (a + b − 2ab)(a − 2 + b) + (1 − ab) =(x − 2y)(x − 2) + (1 − y) = x − 2x − 2xy +
                                     2
                               2
                                                                                               2
                                                                           2
                                                            2
               4y +1 − 2y + y = x − 2x(y +1) +(y + 1) =(x − y − 1) =(a + b − ab − 1) =
                                             2
                                  2
               [(a − 1) − b(a − 1)] =(a − 1) (b − 1) 2
               1.55   The real numbers m, n, p are not all equal, and x = m − np, y = n − pm, z = p − mn .
                                                                                     2
                                                                                                   2
                                                                        2
                                                                                                          
               Show at least one of  x,y,z  is positive.





                                            Download free eBooks at bookboon.com
                                                            20
   15   16   17   18   19   20   21   22   23   24   25