Page 45 - Elementary Algebra Exercise Book I
P. 45

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               Solution: Substitute  a =8 − b − c − d − e  into  a + b + c + d + e = 16:
                                                                      2
                                                                 2
                                                                                2
                                                                                     2
                                                                           2
                                   2    2    2    2    2           2
                (8 − b − c − d − e) + b + c + d + e = 16 ⇒ 2b − 2(8 − c − d − e)b + (8 − c −
                                           2
                                      2
                                                          2
                                                                       2
                                                2
                                                     2
                   (8 − b − c − d − e) + b + c + d + e = 16 ⇒ 2b − 2(8 − c − d − e)b + (8 − c −
                  2
                                 2
                            2
                       2
            d − e) + c + d + e − 16 = 0
               d − e) + c + d + e − 16 = 0. Since  b  is a real number, then
                      2
                                    2
                               2
                          2
                                     2                    2   2    2    2                2
                Δ b = 4(8 − c − d − e) − 8[(8 − c − d − e) + c + d + e − 16] ≥ 0 ⇒ 3c − 2(8 −
                                                                      2
                                                            2
                                                                 2
                                                                                           2
                                                                          2
                                        2
                   Δ b = 4(8 − c − d − e) − 8[(8 − c − d − e) + c + d + e − 16] ≥ 0 ⇒ 3c − 2(8 −
                                 2
                                                  2
                                             2
            d − e)c + (8 − d − e) − 2(16 − d − e ) ≤ 0
               d − e)c + (8 − d − e) − 2(16 − d − e ) ≤ 0 . There are real values  c  satisfying this
                                                2
                                                     2
                                    2
               inequality if and only if
                                2               2          2    2           2
               Δ c = 4(8 − d − e) − 12[(8 − d − e) − 2(16 − d − e )] ≥ 0 ⇒ 4d − 2(8 − e)d + (8 −
                                     2
                                                                                    2
                                                      2
                                                                  2
                                                                       2
                   Δ c =
                         2 4(8 − d − e) − 12[(8 − d − e) − 2(16 − d − e )] ≥ 0 ⇒ 4d − 2(8 − e)d + (8 −
              2
            e) − 3(16 − e ) ≤ 0
               e) − 3(16 − e ) ≤ 0. There are real values  d  satisfying this inequality if and only if
                              2
                 2
                              2             2            2            2
                Δ d = 4(8 − e) − 16[(8 − e) − 3(16 − e )] ≥ 0 ⇒ 5e − 16e ≤ 0 ⇒ e(5e − 16) ≤
                                  2
                                                            2
                                                2
                                                                          2
                   Δ d = 4(8 − e) − 16[(8 − e) − 3(16 − e )] ≥ 0 ⇒ 5e − 16e ≤ 0 ⇒ e(5e − 16) ≤
            0 ⇒ 0 ≤ e ≤ 16/5
               0 ⇒ 0 ≤ e ≤ 16/5 . Hence, the maximum value of  e  is  16/5.
               1.118        Let a positive integer  d  not equal to 2,5,13, show we can find two
               elements  a, b  from the set  {2, 5, 13,d}  such that  ab − 1 is not a perfect square.
               Proof: 2 × 5 − 1 =3 , 2 × 13 − 1 =5 , 5 × 13 − 1= 8 , thus we need to show at least one
                                                     2
                                                                      2
                                    2
               of 2d − 1, 5d − 1, 13d − 1 is not a perfect square. We prove this by contradiction. Suppose
               these three numbers are perfect squares, that is, 2d − 1= x  (i), 5d − 1= y  (ii), 13d − 1= z
                                                                       2
                                                                                       2
                                                                                                         2
               (iii), where  x,y,z  are positive integers. (i) implies  2d − 1 ≡ 1 (mod 2), then  x  is an odd
               number, thus  2d − 1 ≡ 1 (mod 4), thus  d ≡ 1 (mod 2), that is,  d  is an odd number.
               Similarly (ii)(iii) imply y, z  are even numbers. Let y =2y 1 ,z =2z 1 , where y 1 ,z 1 are positive
               integers. Substitute them into (ii)(iii) and subtract the two resulting equalities:
                z − y =2d ⇒ (z 1 − y 1 )(z 1 + y 1 )= 2d  (iv). The right hand side of (iv) is divisible by 2,
                 2
                      2
                      1
                 1
               but the left hand side  (z 1 − y 1 ) + (z 1 + y 1 )= 2z 1  is an even number, then  z 1 − y 1  and
               z 1 + y 1 are multiples of 2, thus the left hand side of (iv) is divisible by  2 . However,  d  is
                                                                                         2
               an odd number, thus the right hand side of (iv) is not divisible by  2 , a contradiction to
                                                                                     2
               the assumption.
               1.119       Let  x,y,z  be nonnegative real numbers, and  x + y + z =1, find the
               maximum value of  xy + yz + zx − 2xyz .
               Solution:
               (1 − 2x)(1 − 2y)(1 − 2z)=(1 − 2y − 2x + 4xy)(1 − 2z)=1 − 2y − 2x +4xy − 2z +
                   (1 − 2x)(1 − 2y)(1 − 2z)=(1 − 2y − 2x + 4xy)(1 − 2z)=1 − 2y − 2x +4xy − 2z +
            4yz +4zx − 8xyz =1 − 2(x + y + z) + 4(xy + yz + zx − 2xyz)
               4yz +4zx − 8xyz =1 − 2(x + y + z) + 4(xy + yz + zx − 2xyz)
                                                                                , thus  xy + yz + zx − 2xyz
                                            Download free eBooks at bookboon.com
                                                            45
   40   41   42   43   44   45   46   47   48   49   50