Page 47 - Elementary Algebra Exercise Book I
P. 47

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               Proof: Let  F(n) = a + b + c . Obviously  a, b, c  are roots of the equation
                                              n
                                         n
                                    n
               (x − a)(x − b)(x − c) =0. This equation is equivalent to
               x =(a + b + c)x − (ab + bc + ca)x + abc .
                                 2
                 3
                                        n
               When  n ≥ 4, we have  x =(a + b + c)x    n−1  − (ab + bc + ca)x n−2  +(abc)x n−3 .
                      n
               Thus  a =(a + b + c)a   n−1  − (ab + bc + ca)a n−2  +(abc)a n−3 .
                          n
               Similarly,  b =(a + b + c)b n−1  − (ab + bc + ca)b n−2  +(abc)b n−3
                     n
               and  c =(a + b + c)c  n−1  − (ab + bc + ca)c n−2  +(abc)c n−3 . Add the above three equalities
               together:  F(n) =(a + b + c)F(n − 1) − (ab + bc + ca)F(n − 2) + (abc)F(n − 3).

               In addition, we know  a + b + c +2ab +2bc +2ca =(a + b + c)
                                       2
                                            2
                                                 2
                                                                                  2
               and  a + b + c − 3abc =(a + b + c)(a + b + c − ab − bc − ca). When  a + b + c =0,
                          3
                               3
                     3
                                                                 2
                                                            2
                                                       2
                                                 2
                                                       2
                                                    2
                                                a +b +c
                                                                           1
                                                                                            1
                                                             1
                                                                              3
                                                                                  3
                                                                                       3
                       (1) = 0, ab + bc + ca = −   2    = − F(2), abc = (a + b + c )= F(3),F(n)=
                                                                           3
                                                                                            3
                                                             2
                                     1
                   1
               then F(2)F(n − 2) + F(3)F(n − 3)
                   2                 3
                                          2
                                             2
                                         a +b +c 2    1            1   3   3    3    1
                                                 = − F(2), abc = (a + b + c )= F(3),F(n)=
                                                2
               (1) = 0, ab + bc + ca = −    a +b +c 2  2  1        3   1  3   3    3  3  1             a +b +c  2   1            1   3   3    3    1
                                             2
                                                                                                           2
                                                                                                        2
                                            2
                                                                             (1) = 0, ab + bc + ca =
                   (1) = 0, ab + bc + ca = −
                              1
            1  F(2)F(n − 2) + F(3)F(n − 3)     2    = − F(2), abc = (a + b + c )= F(3),F(n)= −            2    = − F(2), abc = (a + b + c )= F(3),F(n)=
                                                                       3
                                                                                        3
                                                         2
                                                                                                                    2
                                                                                                                                 3
                                                                                                                                                   3
                                                                                    1
                                                                             (4) = F (2). Choose
                                                                                       2
                                 1
                                                                          1
                                                                                            1
            2  1 F(2)F(n − 2) + F(3)F(n − 3) . Choose  n =4 , we have F(2)F(n − 2) + F(3)F(n − 3)
                              3
                                                               2
                                                            2
               2                 3                         a +b +c 2    1  2        2 1  3  3 3   3     1
                                  (1) = 0, ab + bc + ca = −    2    = − F(2), abc = (a + b + c )= F(3),F(n)=
                                                                                      3
                                                                                                        3
                                                                        2
                                                                    5
                                                      1
                                        1
               n =5 , we have F(2)F(n − 2) + F(3)F(n − 3) (2) = F(2)F(3). Hence,
                                                 1
                               1
                                  (5) = F(2)F(3) + F(3)F
                               2        2        3    3             6
               F(5)     F(2) F(3)            a + b + c  5    a + b + c  2  a + b + c  3
                                                                                 3
                                                                            3
                                                    5
                                                              2
                                                                   2
                                               5
                     =       ·      , that is,            =                            .
                 5        2      3                 5              2       ·     3
               1.121         Given  x = by + cz, y = cz + ax, z = ax + by , find the value of
                 a        b       c
                     +        +       .
               a +1     b +1    c +1
               Solution: From the given conditions, we have
               x − y = by + cz − cz − ax ⇒ (a + 1)x =(b + 1)y ;
                y − z = cz + ax − ax − by ⇒ (b + 1)y =(c + 1)z ;
               z − x = ax + by − by − cz ⇒ (c + 1)z =(a + 1)x .
               Hence,  (a + 1)x =(b + 1)y =(c + 1)z . Let  (a + 1)x =(b + 1)y =(c + 1)z = k , then
               (ax + by + cz) +(x + y + z) =3k  (i). Add up the given equalities in the problem:
               x + y + z = 2(ax + by + cz) (ii). (i)(ii) lead to  ax + by + cz = k , thus
                 a        b       c         ax          by         cz       ax + by + cz    k
                     +        +       =           +           +          =                =    =1.
               a +1     b +1    c +1     (a + 1)x    (b + 1)y   (c + 1)z          k         k
                                            Download free eBooks at bookboon.com
                                                            47
   42   43   44   45   46   47   48   49   50   51   52