Page 48 - Elementary Algebra Exercise Book I
P. 48

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



               1.122        Consider a cuboid whose length, width, height are positive integers


               m, n, r  and  m ≤ n ≤ r . We paint red color on the surface of the cuboid completely and

               then chop it into cubes with side length 1. If we know that the number of cubes without
               red face plus the number of cubes with two red faces minus the number of cubes with one
               red face is 1985, find the values of  m, n, r .


               Solution: We have three cases, separated by the value of  m , to discuss.

               (1) If  m> 2, then the number of cubes without red face is  k 0 =(m − 2)(n − 2)(r − 2),
               the number of cubes with one red face is


               k 1 = 2(m − 2)(n − 2) + 2(m − 2)(r − 2) + 2(n − 2)(r − 2), the number of cubes with
               two red faces is  k 2 = 4(m − 2) + 4(n − 2) + 4(r − 2). We have
                   k 0 + k 2 − k 1 = 1985 ⇒ (m − 2)(n − 2)(r − 2) + 4[(m − 2) + (n − 2)+(r −
               2)] − 2[(m − 2)(n − 2) +(m − 2)(r − 2) +(n − 2)(r − 2)] = 1985 ⇒ (m − 2)(n −
               2)[(r − 2) − 2] − 2(m − 2)[(r − 2) − 2] − 2(n − 2)[(r − 2) − 2] + 4(r − 2) = 1985 ⇒
               (m−2)(n−2)[(r −2)−2]−2(m−2)[(r −2)−2]−2(n−2)[(r −2)−2]+4[(r −2)−2] =

               1977 ⇒ [(r − 2) − 2][(m − 2)(n − 2) − 2(m − 2) − 2(n − 2) + 4] = 1977 ⇒ [(r − 2) −
               2]{(m − 2)[(n − 2) − 2] − 2[(n − 2) − 2]} = 1977 ⇒ (m − 4)(n − 4)(r − 4) = 1977
               Because  1977 = 1 × 3 × 659 = 1 × 1 × 1977 = (−1)(−1) · 1977, then

               m − 4 =1,n − 4= 3,r − 4 = 659, or  m − 4 =1,n − 4= 1,r − 4 = 1977,  or
               m − 4= −1,n − 4= −1,r − 4 = 1977. Therefore,  m =5,n =7,r = 663, or
               m =5,n =5,r = 1981 , or  m =3,n =3,r = 1981.


               (2) If m =1, then n =1 leads to no solution, thus n ≥ 2. In this case, the number of cubes without

               red face k 0 =0, the number of cubes with one red face k 1 =0, and the number of cubes with two

               red    faces   k 2 =(n − 2)(r − 2) .    We     have    k 0 + k 2 − k 1 = k 2 = 1985 ,  thus


               (n − 2)(r − 2) = 1985 = 5 × 397 = 1 × 1985, from which we obtain n − 2 =5,r − 2 = 397,

               or n − 2 =1,r − 2 = 1985. Therefore, m =1,n =7,r = 399, or m =1,n =3,r = 1987.

               (3)  If  m =2 ,  then  k 0 =0 ,  k 1   and  k 2   are  even  numbers.  In  this  case,  obviously

               k 0 + k 2 − k 1 �= 1985.



















                                            Download free eBooks at bookboon.com
                                                            48
   43   44   45   46   47   48   49   50   51   52   53