Page 50 - Elementary Algebra Exercise Book I
P. 50

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions


               2  EQUATIONS



                                        5         8
               2.1 Given the equation  x − b = x + 142, find the smallest positive integer  b  such that
                                        2         5
               the solution  x  is a positive integer.

                          5         8                9                                                9
               Solution:  x − b = x + 142 ⇒ b =        x − 142. Since  b  is a positive integer, then   x
                          2         5                10                                              10
               should be a positive integer and greater than 142. Thus  x  should be a multiple of 10. To

               minimize  b ,  x = 160, then  b =  9  × 160 − 142 = 2, that is, the smallest positive integer
                                                 10
               b  is 2.


               2.2 Solve   x − a − b  +  x − b − c  +  x − c − a  =3 .
                              c           a            b
               Solution 1: The equation implies  a, b, c  =0. Multiply  abc  on both sides of the equation:
                   (x − a − b)ab +(x − b − c)bc +(x − c − a)ca =3abc ⇔ (ab + bc + ca)x =3abc
                (x − a − b)ab +(x − b − c)bc +(x − c − a)ca =3abc ⇔ (ab + bc + ca)x =3abc + +
            ab(a + b)+ bc(b + c)+ ca(c + a) ⇔ (ab + bc + ca)x =(a + b + c)(ab + bc + ca) + ca). When
               ab(a + b)+ bc(b + c)+ ca(c + a) ⇔ (ab + bc + ca)x =(a + b + c)(ab + bc
               ab + bc + ca  =0 ,  x = a + b + c ; When  ab + bc + ca =0,  x  can be any real number.


               Solution 2:
                x − a − b − b x − b − c b − c x − c − a c − a  x − a − b a − b  x − b − c b − c  x − c − a c − a
                   x − a
                              x −
                                         x −
                                                                                       x −
                                                                         x −
                                                          x −
                                                                               −1+ −1+ x − c − a
                          + + x − b − c
                   x − a − b         + + x − c − a  =3          −1+ −1+ x − b − c            − −
                                                =3 ⇔ ⇔ x − a − b
                    c c     +  a a      +  b b     =3 ⇔    c c      −1+  a a      −1+   b b      −
                                              b
                                                                                            b
                       c
                                                               c
                                  a
                        x − (a + b
                      x − (a + b + c) + c) x − (a + b + c) + c) x − (a + b + c) + c)  a    1 1
                                         x − (a + b
                                                          x − (a + b
                                                                      =0 ⇔ [x−(a+b+c)]( + +
               1=
             1= 0 ⇔ 0 ⇔ x − (a + b + c)              + + x − (a + b + c) =0 ⇔ [x−(a+b+c)]( 1
                                    + + x − (a + b + c)
                                                                                           a a +
               1= 0 ⇔       c c        +     a a        +     b b         =0 ⇔ [x−(a+b+c)](
                                                a
                                             ab + bc
             1 1  1 1          c           ab + bc + ca + ca     b                             a
                                                       =0 =0
                 + )= 0 ⇔ [x − (a + b
                    1
                1
               + )= 0 ⇔ [x − (a + b + c)] + c)] ab + bc + ca   When  ab + bc + ca  =0,  x = a + b + c ;
                 c c
             b b + )= 0 ⇔ [x − (a + b + c)]    abc abc    =0.
                b   c                             abc
               When  ab + bc + ca =0,  x  can be any real number.
               2.3 Find the condition for  a  such that the equation  |ax − 2y − 3| + |5x +9| =0 has the
               solution  (x, y) where  x, y  have the same sign.
               Solution:                                                                    9  9  < 0,y =
                        |ax − 2y − 3| + |5x +9| =0 ⇒ ax − 2y − 3=0, 5x +9 = 0 ⇒ x = −
                   |ax − 2y − 3| + |5x +9| =0 ⇒ ax − 2y − 3=0, 5x +9 = 0 ⇒ x = −              < 0,y =
                                                                                               5
                     ax    3      9     3                                                   5
               ax    3  −   9 = −  3 a −
                                                                                       5
                   −  2  = − 2  a − 10 . Since  x, y  have the same sign,  y  < 0 ⇒ a> − .
                                        2
                2    2      10     2                                                   3
               2.4 Find all positive integer solutions of the equation  123x + 57y = 531.
                                                                                  6 − 3x
               Solution:  123x + 57y = 531 ⇔ 41x + 19y + 177 ⇔ y =9 − 2x +               . Thus
                                                                                    19
               x =2,y =5 is a specific solution, then all positive integer solutions should have the
               form  x =2 − 19t, y = 5 + 41t, where  t  is an integer.
                                            5 5      2 2
                             5
                                                  <t<
                                           41 41     19 19
               2 − 19t> 0,t + 41t> 0 ⇒−2 − 19t> 0,t + 41t> 0 ⇒− <t<  , thus the only integer  t =0. Hence, the
               original equation only has one positive integer solution  x =2,y =5.
                                            Download free eBooks at bookboon.com
                                                            50
   45   46   47   48   49   50   51   52   53   54   55