Page 51 - Elementary Algebra Exercise Book I
P. 51

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions




               2.5 Solve the equation  x − 12x + 47x − 60x =0.
                                                        2
                                                3
                                         4
               Solution:x − 12x + 47x − 60x =0 ⇔ x(x − 3x − 9x + 27x + 20x − 60) = 0 ⇔
                                         2
                                                                            2
                                 3
                          4
                                                               3
                                                                     2
                            3
                    4
                                                                 2
                                                                        2
                                                          3
                                    2
                   x − 12x + 47x − 60x =0 ⇔ x(x − 3x − 9x + 27x + 20x − 60) = 0 ⇔
                        2
                     x[x (x − 3) − 9x(x − 3) + 20(x − 3)] = 0 ⇔ x(x − 3)(x − 4)(x − 5) = 0
               x[x (x − 3) − 9x(x − 3) + 20(x − 3)] = 0 ⇔ x(x − 3)(x − 4)(x − 5) = 0 , which leads to
                   2
               four solutions:  x =0 or 3 or 4 or 5.
               2.6 Given  |x − 2| < 3, solve the equation  |x +1| + |x − 3| + |x − 5| =8.
               Solution 1:  |x − 2| < 3 ⇒−1 <x< 5.
               Then  |x +1| + |x − 3| + |x − 5| =8 ⇒ x + 1+ |x − 3|− x +5 = 8 ⇒|x − 3| =2.
               When  x ≥ 3,  x − 3= 2 ⇒ x =5 which does not satisfy the given inequality;
               When  x< 3,  −(x − 3) = 2 ⇒ x =1 which satisfies the given inequality.
               Solution 2:  |x − 2| < 3 ⇒−1 <x< 5.
               When −1 < x< 3, |x +1| + |x − 3| + |x − 5| =8 ⇒ (x + 1) − (x − 3) − (x − 5) = 8 ⇒ x =1;
               When 3 ≤ x< 5,  |x +1| + |x − 3| + |x − 5| =8 ⇒ (x +1)+(x − 3) − (x − 5) = 8 ⇒ x =5,
               a contradiction to 3 ≤ x< 5, or x =5 does not satisfy the given inequality.



               2.7 Solve the equation  x|x|− 3|x|− 4= 0.

               Solution: When x ≥ 0, x|x|− 3|x|− 4= 0 ⇒ x − 3x − 4= 0 ⇒ (x + 1)(x − 4) = 0 ⇒ x = −1
                                                             2
               (deleted since  x ≥ 0) or  x =4.


               When  x< 0,  x|x|− 3|x|− 4= 0 ⇒−x +3x − 4= 0 ⇒ x − 3x +4 = 0  which  has  no
                                                        2
                                                                            2
               solution since  Δ=9 − 16 < 0.

               As a conclusion, the original equation has a unique solution  x =4.


               2.8 We know that the equation system


                                                   3x + my − 5=0
                                                    x + ny − 4=0
               has no solution, and  m, n  are integers whose absolute values less than 7, find the values
               of  m, n.


















                                            Download free eBooks at bookboon.com
                                                            51
   46   47   48   49   50   51   52   53   54   55   56