Page 90 - Elementary Algebra Exercise Book I
P. 90

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities


               3  INEQUALITIES




               3.1 Determine the order of the numbers  , log 2, .
                                                         4
                                                                  2
                                                         9    5   5
                                                               4
                                                                                             4
                         4
               Solution:  − log 2=    4  −  lg 2  =  4 lg 5−9 lg 2  =  lg 5 −lg 2 9  =  lg 625−lg 512  > 0, thus  > log 2.
                         9      5     9    lg 5    9lg5        9 lg 5      9 lg 5            9       5
                                                                               2
                                                                                                       2
                                                                                          4
                        2    lg 2  2   5 lg 2−2 lg 5  lg 32−lg 25  , thus  log 2 > . Hence,  > log 2 > .
               log 2 −  5  =  lg 5  −  5  =  5lg5  =  5 lg 5  > 0         5    5          9      5     5
                  5
               3.2 Solve the inequality   1  < log 2  x< 1.
                                        100      0.1
                                                                                                     √
               Solution:   1  < log 2  x< 1 ⇒ 1 < log   x<   1   or −1 < log  x< −  1  ⇒ 0.1 <x<     10  0.1
                         100      0.1                0.1     10            0.1      10
                   √
               or   10  10 <x< 10.
                                                                            √      √
               3.3  a, b, c, d  are positive numbers, show   (a + c)(b + d) ≥  ab +  cd .
                                   √
                                                                         √
                               √
                                                                      √
               Proof:  ad + bc ≥ 2 abcd ⇔ ad + bc + ab + cd ≥ ab +2 abcd + cd ⇔ (a + c)(b + d) ≥
                   ad
                           √
                                                               √
                                                        √
                √   √+ bc ≥ 2 abcd ⇔ ad + bc + ab + cd ≥ ab +2 abcd + cd ⇔ (a + c)(b + d) ≥

                                                     √
                                                            √
                       √
                                2

                   ( ab +
                                                          ab +
                             2
               ( ab +    cd) ⇔      (a + c)(b + d) ≥   ab +   cd  cd since  a, b, c, d > 0.
                                       (a + c)(b + d) ≥
                             cd) ⇔
               3.4    Given  −1 ≤ u + v ≤ 1, 1 ≤ u − 2v ≤ 3, find the range of  2u +5v .
               Solution: Let  2u +5v = λ 1 (u + v)+ λ 2 (u − 2v)=(λ 1 + λ 2 )u +(λ 1 − 2λ 2 )v2u +5v = λ 1 (u + v)+ λ 2 (u − 2v)=(λ 1 + λ 2 )u +(λ 1 − 2λ 2 )v ,

               then  λ 1 + λ 2 =2 and  λ 1 − 2λ 2 =5. Solve them to obtain  λ 1 =3,λ 2 = −1.
               Hence,  2u +5v = 3(u + v) − 1(u − 2v) ∈ [(−1) × 3 − 3, 1 × 3 − 1] = [−6, 2]2u +5v = 3(u + v) − 1(u − 2v) ∈ [(−1) × 3 − 3, 1 × 3 − 1] = [−6, 2].

               3.5 Given  |h| < , |k| < , show  |2h − 3k| <ε .
                                         ε
                                 ε
                                 4       6
                                                             ε
                                                   ε
                                   ε
               Proof:  |h| <  ε  ⇔− <h <    ε  ⇔− < 2h< .
                             4     4        4      2         2
                                                      ε
                                            ε
                            ε
                |k| <  ε  ⇔− <k <    ε  ⇔− < 3k< .
                      6     6        6      2         2
               Hence,  −ε< 2h − 3k <ε ⇔|2h − 3k| <ε .
                                        1  3  5       99     1
               3.6 Show the inequality  · · · ··· ·      <    .
                                        2  4  6       100   10
                     1
                          2 3
                                                                                                             4
                                                                                        3
                                 4
                                                                                     1
               Proof:  < ,    < , ··· ,  97  <  98 ,  99  <  100 . Multiply all these inequalities:  · · ··· ·  97  ·  99  <  2  · · ··· ·  98  ·  100
                     2    3 4    5      98   99 100   101                            2  4       98  100   3    5     99  101
                                                                                   3
                   4
 1  · · ··· ·  97  ·  99  <  2  · · ··· ·  98  ·  100 . Multiply this inequality by  · · ··· ·  97  ·  99  : ( · · ··· ·  97  ·  99 2  1  .
 3
                                                                                1
                                                            1
                                                               3
                                                                                                 ) <
 2  4  98  100  3  5      99  101                           2  4       98  100  2  4       98  100     101
                                             1  3      97   99     1  <  1
               Take the square root to obtain  2  · · ··· ·  98  ·  100  < √ 101  10 .
                                                4
                                            Download free eBooks at bookboon.com
                                                            90
   85   86   87   88   89   90   91   92   93   94   95