Page 109 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 109

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                 1.4.3 Concept of Curvature

               The expression for curvature is highly useful, be it, for mechanics of a vehicle negotiating
               undulations or curves, or, curvature of a bent beam. Therefore, it is important to derive a
               general expression which could be used for any curve as shown in [Fig 1.10].
                                                 Point of the curve







                   [Fig 1.10: a general curve with varying curvature]




                  ‘”†‡” –‘ ϐ‹† –Ї ”ƒ†‹—• ƒ– ƒ ‰‹˜‡ ’‘‹– ‘ ƒ ‰‡‡”ƒŽ …—”˜‡ ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤͳͲȐǡ ƒ ƒ”… ‹•
                †”ƒ™ •—…Š –Šƒ– –Ї …—”˜‡ ƒ– –Šƒ– ’‘‹– ‹• –ƒ‰‡–‹ƒŽ –‘ –Ї ƒ”… ‘ˆ ”ƒ†‹—• ȋ”ȌǤ

                 • „‘–Š –Ї •Ž‘’‡ ƒ† ‹–• ”ƒ–‡ ‘ˆ …Šƒ‰‡ ˜ƒ”› ˆ‘” ƒ …—”˜‡ǡ އ– —• ϐ‹† –Ї ‰‡‡”ƒŽ ‡š’”‡••‹‘ ˆ‘”
                …—”˜ƒ–—”‡ ‘” ”ƒ†‹—• ‹ –‡”• ‘ˆ ȋ†›Ȁ†šȌ ƒ† ȋ† ›Ȁ†š Ȍ
                                                                 ʹ
                                                           ʹ
                 ‘•‹†‡” ƒ …—”˜‡ ‹ –Ї Ǯš-›ǯ ’Žƒ‡ ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤͳͳȐǤ  ”ƒ™ –ƒ‰‡–• ƒ– –™‘ ’‘‹–• •‡’ƒ”ƒ–‡†
                                                                    „›  ƒ  ‡Ž‡‡–ƒŽ  ƒ”…  އ‰–Š  ȋ†•ȌǤ   Ї  ƒ”…
                                                                    އ‰–Š  •—„–‡†•  ƒ  ƒ‰Ž‡  ȋ†ɅȌ  ƒ–  –Ї
                                                                    …‡–‡”Ǥ  Š‹• ‹• ‡šƒ…–Ž›  –Ї  ƒ‰Ž‡  „‡–™‡‡
                                                                    –Ї –ƒ‰‡–• ƒ– ’‘‹– ȋͳȌ ƒ† ȋʹȌǤ














                            [Fig 1.11: radius of curvature]




                                                                              dy  2

                                                2
                                                        2
                Therefore, we have:   Rdθ =   dx  +  dy     or   Rdθ = dx 1 +
                                                                              dx

                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 12
   104   105   106   107   108   109   110   111   112   113   114