Page 121 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 121

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                 ˆ –Ї •…”‡™ ‹• ‰‹˜‡ ƒ …Ž‘…™‹•‡ ”‘–ƒ–‹‘ǡ –Їǡ –Ї •…”‡™ ƒ†˜ƒ…‡• ‹ –Ї ‡‰ƒ–‹˜‡   †‹”‡…–‹‘Ǥ
                 ‡…‡ ‰‘‹‰ „› –Ї ”—އǡ –Ї Ǯwǯ ˆ‘” –Ї •…”‡™ •Š‘™ ‹ –Ї ȏ ‹‰ „Ȑ ‹• ˜‡…–‘”‹ƒŽŽ› ”‡’”‡•‡–‡† ƒ•ǣ


                w     =  w −k , indicating that the direction is along negative Z axis (clock wise)
                w =  w k , indicating that the direction is along positive Z axis (anti - clock wise)


                 Ї ˜‡…–‘”‹ƒŽ ”‡’”‡•‡–ƒ–‹‘ ‘ˆ –Ї ’Š›•‹…ƒŽ •‹–—ƒ–‹‘ ‹• ƒŽ™ƒ›• ‡š–”‡‡Ž› —•‡ˆ—Ž ‡•’‡…‹ƒŽŽ› ‹ –™‘
                †‹‡•‹‘ƒŽ ‘” –Š”‡‡-†‹‡•‹‘ƒŽ •‹–—ƒ–‹‘•Ǥ  Ї ‡šƒ’އ• ˆ‘” ƒš‹ƒŽ ˜‡…–‘”• ƒ”‡ ƒ‰—Žƒ” ˜‡Ž‘…‹–›ǡ
                ƒ‰—Žƒ”-‘‡–—ǡ ƒ‰—Žƒ” ƒ……‡Ž‡”ƒ–‹‘ǡ –‘”“—‡ ƒ† ‘–Ї” ƒ‰—Žƒ” ˜‡…–‘”•Ǥ












                                                 [Fig b: Right Handed Screw]


                ͳǤͷǤ͵   …ƒ”–‡•‹ƒ ˜‡…–‘”


                 ‡– —• …‘•‹†‡” ƒ ˜‡…–‘” …‘‡…–‹‰ –Ї ‘”‹‰‹ ȋͲǡͲǡͲȌ ƒ† ƒ ƒ”„‹–”ƒ”› ’‘‹– ‹ •’ƒ…‡ ȋšǡ ›ǡ œȌǤ

                  ˜‡…–‘” ‹ ƒ ͵  …ƒ”–‡•‹ƒ •’ƒ…‡ ‹• ”‡’”‡•‡–‡† ƒ• ˆ‘ŽŽ‘™•ǣ


                Vector V  = [(magnitude along ‘x’  ∗  unit vector along ‘x’) + (magnitude along ‘y’
                              ∗  unit vector along ‘y’) + (magnitude along ‘z’  ∗  unit vector along ‘z’)



                That is: [V =  x − x  i  +  y − y  j  + (z − z )k]
                                              1
                                          2
                                                          1
                                                      2
                                   1
                              2
                 Ї”‡ǡšͳǡ ›ͳ ƒ† œͳ  ƒ”‡ …‘‘”†‹ƒ–‡• ‘ˆ –Ї ‘”‹‰‹Ǥ  Ї”‡ˆ‘”‡ǡ
                ™‡ Šƒ˜‡ǣ


                [V =  x − 0 i  +  y − 0 j  + (z − 0)k]
                        2
                                               2
                                   2
                Let us analyze a vector  V     in a 3D space as shown in [         .     ].
                                        ,




                                                                              [Fig 1.19: Vector in a 3D space]

                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 24
   116   117   118   119   120   121   122   123   124   125   126