Page 164 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 164

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]
                    ˜ƒŽ—‡ ȋ͵Ǥͳ ‹• ˆ‘—† ˆ”‘ ‘”ƒŽ †‹•–”‹„—–‹‘ –ƒ„އ ˆ‘” ƒ ˆƒ‹Ž—”‡ ’”‘„ƒ„‹Ž‹–› އ•• –Šƒ ͲǤͲͲͳȌǤ  ›
                ™Š‡”‡ –Ї ˜ƒŽ—‡ ‘ˆ  †‹ƒ‡–‡” ‹• …‘’—–‡†Ǥ
                 ‘–‡ǣ  ‡•‹–‹˜‹–› ‹ †‡•‹‰ …‘–‡š– …‘—ކ ƒŽ•‘ „‡ ™‹–Š ”‡•’‡…– –‘ –‘އ”ƒ…‡ •–ƒ… —’ ™Š‡”‡ …‡”–ƒ‹
                –‘އ”ƒ…‡• ȋ‰‡‘‡–”‹… ‘” †‹‡•‹‘ƒŽȌǡ ˆ‘” ‹•–ƒ…‡ ƒˆˆ‡…– –Ї ˆ—…–‹‘ƒŽ‹–› ‘” ’‡”ˆ‘”ƒ…‡ ‘ˆ ƒ
                ‡…Šƒ‹• ƒ›„‡ •‡•‹–‹˜‡ –‘ ˆ‡™ –‘އ”ƒ…‡•Ǥ    ”‘„—•– †‡•‹‰ •Š‘—ކ „‡ ƒ†‡ ‹•‡•‹–‹˜‡ –‘ –Ї
                –‘އ”ƒ…‡•Ǥ
                 ‘-‰”ƒ†‹‡– ‡–Š‘† ‘” †‡”‹˜ƒ–‹˜‡ ˆ”‡‡ ȋ‘– †‹•…—••‡† ‹ –Š‹• „‘‘Ȍǣ

                 Š‹• ‡–Š‘† ‹• ƒ’’Ž‹‡† ™Š‡ –Ї ƒƒŽ›–‹…ƒŽ ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ †‡•‹‰ ‘„Œ‡…–‹˜‡ ˆ—…–‹‘ ƒ† –Ї
                †‡•‹‰ ˜ƒ”‹ƒ„އ• ‹• ‘– ‘™ ‘” ‹– ‹• ‘ •‘‘–Š Š‹‰ŠŽ› †‹•…”‡–‡ ‘” ‘‹•›Ǥ   •—…Š …ƒ•‡• †‡”‹˜ƒ–‹˜‡
                ‡˜ƒŽ—ƒ–‹‘ ‹• ‘ˆ  ‘ —•‡ ƒŽ•‘ ‹– ƒ› ‘– „‡ ’‘••‹„އ –‘ ‡˜‡ …‘•–”—…– ‘„Œ‡…–‹˜‡ ˆ—…–‹‘Ǥ

                 ‘” ‡šƒ’އǡ …ƒ”„‘ ‹†—…–‹‘ ‹ ‰‡ƒ”• •ƒ› –‘ „‡ …‘–”‘ŽŽ‡† ™‹–Š ‹ ͲǤͳ ‘ˆ ƒ……—”ƒ…› ‡‡†• †ƒ–ƒ
                ‘ˆ –‘‘ ƒ› ˜ƒ”‹ƒ„އ•Ǥ  ‡ ‹– ‰”‡‡ †‹‡•‹‘•ǡ –‡’‡”ƒ–—”‡ǡ –‹‡ ‘ˆ ‡š’‘•—”‡ǡ ˆ—”ƒ…‡ ‡ˆϐ‹…‹‡…›
                ƒ† ƒ› ‘”‡Ǥ   Ї ‘’–‹— ’ƒ”ƒ‡–‡”• ‡‡†‡† …‘—ކ „‡ Ž‘…ƒ–‡†  ‘Ž› „› •–”—…–—”‡† ”ƒ†‘
                •‡ƒ”…ŠǤ   ‡‡”ƒŽŽ›ǡ  •‹–—ƒ–‹‘•  …Š‘•‡  ˆ‘”  †‡”‹˜ƒ–‹˜‡  ˆ”‡‡  •‹–—ƒ–‹‘•ǡ  Šƒ˜‡  —Ž–‹’އ  Ž‘…ƒŽ  ‹‹ƒǤ
                 Š‘—‰Š •‘‡ †ƒ–ƒ •—”ˆƒ…‡• ƒ› Ž‘‘ •‘‘–Š ‹– ƒ› Šƒ˜‡ ƒ› †‹•…”‡–‡ ˆ‡ƒ•‹„އ •’ƒ…‡•Ǥ  Š‘—‰Š
                –Ї •‡ƒ”…Š ƒ› ‘– ‰‹˜‡ ƒŽ™ƒ›• –”—‡ ‰Ž‘„ƒŽ ‘’–‹ƒŽ •‘Ž—–‹‘ „—– ’”‘˜‹†‡• ’”ƒ…–‹…ƒŽ •‘Ž—–‹‘Ǥ

                 šƒ’Ž‡ ͳǣ ‘’–‹‹œ‡ –Ї •‡…–‹‘ ’”‘’‡”–› ȋš› Ȍ ‰‹˜‡ –Šƒ– ‹– ‹• ‹•…”‹„‡† ‹ ƒ …‹”…އǡ ƒ• •Š‘™ ‹
                                                            ͵
                ȏ ‹‰ ͳǤ͸͸ȐǤ














                                             [Fig 1.66: a section inscribed in a circle]


                                                              3
                 Solution 1: The function to be optimized is xy
                                                                  2
                                                             2
                                                                       2
                 For a circle, by Pythagoras theorem, we have:  x + y = d
                 Simplifying the above expression we get  y =  d − x
                                                                   2
                                                               2
                                                                               3
                 In order to optimize for  xy   let us substitute the value of ‘y’ in  xy  . Therefore, we get:
                                          3
                                 3
                    3
                   xy =  d − x  2 ∗ x
                          2
                               2
                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 67
   159   160   161   162   163   164   165   166   167   168   169