Page 167 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 167

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                Substituting the values of the derivatives in the Hessian matrix, we get:


                                      2
                                             2
                                      ∂ f   ∂ f
                                     ∂x 2  ∂x ∂y    2 0

                                             2
                   Hessian Matrix =      ∂ f  ∂ f  =   0 2
                                      2
                                              2
                                    ∂y ∂x   ∂y

                 The determinant of the Hessian matrix is ‘4’ which is positive. Hence, at (x = 0) and (y = 0) the
                 function assumes a minimum value, and is given by:

                  f x, y  = x + y + 2xy = 0
                                       2
                                2
                            2

                ͳǤͳͷ  ‘—”‹‡”  ‡”‹‡• ƒ†  ”ƒ•ˆ‘”•

                 ›  ‰‡‡”ƒŽ  ™ƒ˜‡  ˆ‘”  ‹•  ƒ  …‘„‹ƒ–‹‘  ‘ˆ  •‡˜‡”ƒŽ  •‹—•‘‹†ƒŽ  ‘”  …‘•‹—•‘‹†ƒŽ  ™ƒ˜‡•ǡ
                ‡ƒ‹‰ǡ ƒ ™ƒ˜‡ …‘—ކ „‡ …‘•–”—…–‡† „› •‡˜‡”ƒŽ ™ƒ˜‡• ‘ˆ †‹ˆˆ‡”‡– ˆ”‡“—‡…‹‡•Ǥ












                                              [Fig 1.67: Addition of two harmonics]



                 ‘” ‡šƒ’އǡ އ– —• …‘•‹†‡” –Ї ƒ††‹–‹‘ ‘ˆ –™‘ •‹—•‘‹†ƒŽ ™ƒ˜‡•ǡ ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤ͸͹ȐǤ















                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 70
   162   163   164   165   166   167   168   169   170   171   172