Page 168 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 168

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]
                 Ї …‘„‹‡† ™ƒ˜‡ ˆ‘” ‘ˆ Šƒ”‘‹…• ͳ ƒ† ʹ ‹• ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤ͸ͺȐǤ





















                                       [Fig 1.68: Combined wave form of harmonics 1 and 2]

                 ˆƒ…–ǡ ™‹–Š –Ї ”‹‰Š– …‘„‹ƒ–‹‘ ‘ˆ ™ƒ˜‡•ǡ ƒ› ™ƒ˜‡ ’ƒ––‡” …‘—ކ „‡ †‡”‹˜‡†Ǥ  ‘” ‡šƒ’އ –Ї
                ‡š…‹–ƒ–‹‘ ‘ˆ –Ї …”ƒ •Šƒˆ– …‘—ކ „‡ …‘’”‹•‡† ‘ˆ •‡˜‡”ƒŽ Šƒ”‘‹…•Ǥ  Ї ‘—–’—– ‘ˆ ‰—‹–ƒ” ‹• ƒŽ•‘
                ƒ ™ƒ˜‡ ˆ‘” …‘’”‹•‹‰ ‘ˆ •‡˜‡”ƒŽ Šƒ”‘‹…•Ǥ

                 Ї ˜‡”› ‡••‡…‡ ‘ˆ  ‘—”‹‡” •‡”‹‡• ‹• –Šƒ–ǡ ‹– •’Ž‹–• ƒ ’‡”‹‘†‹… ˆ—…–‹‘ ‹–‘ •‡˜‡”ƒŽ Šƒ”‘‹…•Ǥ
                 šƒ’Ž‡ ͳǣ …‘•‹†‡” –Ї ˆ‘ŽŽ‘™‹‰ ‡š’”‡••‹‘ǣ


                             n=∞
                       1   1     1
                 f x  =  −         sin nπx
                       2   π     n
                              n=1
                ‘n’ could assume a large value, but for simplicity of calculations, we have chosen n=4. Plotting
                addition of 4 harmonics we get:

                             n=4
                       1   1     1
                 f x  =  −    sin nπx
                       2   π     n
                             n=1
                                 1   1           1    1            1   1            1    1
                              =   − sin 1πx  + −        sin 2πx  + −     sin 3πx  + −      sin 4πx
                                 2   π           2   2π            2   3π           2   4π

                The above function could be graphically represented as shown in [Fig 1.69].








                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 71
   163   164   165   166   167   168   169   170   171   172   173