Page 163 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 163

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                 ”‘„ƒ„‹Ž‹•–‹…Ȁ•–‘…Šƒ•–‹… †‡•‹‰ ‹ –Š‹• ‡–Š‘†ǡ –Ї •–ƒ–‹•–‹…ƒŽ ˜ƒ”‹ƒ–‹‘ ‹ ‡ƒ…Š ’ƒ”ƒ‡–‡”
                ‹•  •–—†‹‡†Ǥ   ƒ…Š  ’ƒ”ƒ‡–‡”  …‘—ކ  ƒ••—‡  ƒ  …‡”–ƒ‹  ˜ƒ”‹ƒ–‹‘ǡ  ˆ‘”  ‡šƒ’އǡ  –Ї   ‘—‰ǯ•
                ‘†—Ž—• …‘—ކ ˆ‘” ƒ  ƒ—••‹ƒȀ‘”ƒŽ †‹•–”‹„—–‹‘Ǥ


                 ‘”  ‡šƒ’އǡ  …‘•‹†‡”  –Ї  ‘”ƒŽ  †‹•–”‹„—–‹‘•  ƒ†  –Ї‹”  ”‡•’‡…–‹˜‡  •–ƒ†ƒ”†  †‡˜‹ƒ–‹‘•  ˆ‘”
                 ‘—‰ǯ• ‘†—Ž—• ȋ Ȍ ƒ† ƒ”‡ƒ ‘‡– ‘ˆ ‹‡”–‹ƒ ȋ Ȍǡ •Š‘™ ‹ ȏ ‹‰ ͳǤ͸ͷȐǤ  Ї ‡“—‹˜ƒŽ‡– •–ƒ†ƒ”†
                †‡˜‹ƒ–‹‘ ˆ‘” –Ї ‡–‹‘‡† ’ƒ”ƒ‡–‡”• ‹• …‘’—–‡† ƒ• ˆ‘ŽŽ‘™•ǣ





















                         [Fig 1.65: Normal distribution of 'E' and 'I' and their respective standard deviations]

                Let the maximum bending stress s =   32        with terms with usual meaning. Now here d needs to
                                                   3.14   3
                be found optimally.

                The equivalent standard deviation is given by:


                                                                ∂σ  2         ∂σ  2         ∂σ  2

                                                              2
                                                                                         2
                                                                           2
                 Equivalent standard deviation   σ eqv    =   σ        +  σ        +  σ
                                                                                       d
                                                            L
                                                                         F
                                                                ∂L            ∂F            ∂d
                Where,
                   ∂s   ∂s      ∂σ
                            and       are the sensitivity coefficients which are multiplied by  their respective
                   ∂L   ∂F      ∂d
                standard deviations. Since we seek to optimize the diameter σ eqv  is in terms of the mean
                variable diameter.
                Let mean stress                be computed by putting all mean parameters including variable mean
                diameter.

                Let the mean yield strength be (Y) and standard deviation be  σ
                                                                            Y
                Now assuming a failure probability (recommended is less than 0.0001) from the stress
                distribution subtracted from strength distribution, we get


                            Y − S
                  3.1 = 0 −      mean
                           σ    2  + σ  2
                             eqv     Y
                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 66
   158   159   160   161   162   163   164   165   166   167   168