Page 166 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 166

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]
                ‘‡ —•– ϐ‹”•– Ž‘…ƒ–‡ ȋšǡ›Ȍ „› ‡“—ƒ–‹‰ –Ї †‡”‹˜ƒ–‹˜‡ ‘ˆ ˆ—…–‹‘ ™‹–Š ”‡•’‡…– –‘ Ǯšǯ ƒ† Ǯ›ǯ –‘ œ‡”‘Ǥ
                 —„•‡“—‡–Ž›ǡ –Ї ƒ–”‹š —•– „‡ …‘•–”—…–‡† –‘ —‡”‹…ƒŽŽ› ‡˜ƒŽ—ƒ–‡ –Ї †‡–‡”‹ƒ–Ǥ
                 ‹ˆˆ‡”‡–‹ƒ–‹‰ –Ї ˆ—…–‹‘ ™‹–Š ”‡•’‡…– –‘ Ǯšǯ ™‡ ‰‡–ǣ

                 ∂f x, y
                                  2
                         = 2x + 2y = 0
                   ∂x
                Simplifying the above expression we get [x = −y ]
                                                           2
                Differentiating the function with respect to ‘y’ we get:

                 ∂f x, y
                         = 2y + 4xy = 0
                   ∂y

                                                             1
                Simplifying the above expression we get   x = −    and  y = 0
                                                             2

                Substituting the values [y = 0] in the expression [x = −y ], we get [x = 0]. Therefore we have:
                                                                 2
                                   1
                 x = 0  and   x = −
                                   2

                In order to find the minimum value of the function let us choose the coordinates (x = 0) and (y = 0).

                Let us begin by computing the remaining component of the Hessian matrix.

                  2
                 ∂ f x, y
                          = 2
                   ∂x 2
                  2
                 ∂ f x, y
                          = 2 + 4x = 0  , since we have chosen the coordinates  x = 0  and  y = 0 , we get:
                   ∂y 2
                  2
                 ∂ f x, y
                          = 2 + 4 0  = 2
                   ∂y 2
                The cross derivatives are computed as follows:


                  ∂ ∂f x, y
                              = 4y
                 ∂x    ∂y

                  ∂ ∂f x, y
                              = 4y
                 ∂x    ∂x

                Substituting the values (x = 0) and (y = 0) in the cross derivatives, we get:

                                 2
                    2
                   ∂ f x, y     ∂ f x, y
                            =            = 0
                    ∂x ∂y        ∂y ∂x
                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 69
   161   162   163   164   165   166   167   168   169   170   171