Page 165 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 165

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                Taking ‘x’ inside the root we get:

                                      3                        3
                         2          2  2            2        8  2
                   3
                                    3     =  xy =  x 3 d − x 3
                            2
                 xy =  x 3 d − x  2+          3        2


                                                     2        8

                                                        2
                Therefore the term under the root is:   x 3 d − x 3

                Differentiating with respect to x we get:

                    3
                 d y x       8    5        2     1
                                                −
                                        2
                        =  − ∗ x 3  +  d ∗ ∗ x 3  = 0
                   dx        3             3

                                      d
                Therefore, we get    x =
                                      2
                                                                    2
                Substituting the value of ‘x’ in the equation  x + y = d  , we get:
                                                          2
                                                               2
                     d
                 y =   3
                     2

                The optimum or maximum value of  xy   is given by:
                                                    3

                        d   d     3     d 4
                   3
                 xy =   ∗     3    =       3 3
                        2   2           16



                Example 2: Find the minimum value of  f x, y  = x + y + 2xy  , using gradient approach.
                                                                  2
                                                                             2
                                                                      2

                Note: Though this is a simple case, the entire procedure of using the Hessian matrix is well
                demonstrated.

                Solution 2: in order to solve this situation we would use the Hessian matrix, which is given as
                follows:

                                     2
                                            2
                                     ∂ f   ∂ f
                                    ∂x 2  ∂x ∂y
                                            2
                  Hessian Matrix =      ∂ f  ∂ f
                                     2
                                             2
                                   ∂y ∂x   ∂y
                 Š‹• ƒ–”‹š ‹• —•‡† –‘ …Ї… –Ї ƒš‹— ƒ† ‹‹— ˜ƒŽ—‡ ‘ˆ ƒ ˆ—…–‹‘ ™Š‡ –Ї”‡ ‹• ‘”‡
                –Šƒ ‘‡ ˜ƒ”‹ƒ„އǤ   –Š‹• ‡šƒ’އǡ –Ї”‡ ƒ”‡ ʹ ˜ƒ”‹ƒ„އ• Ǯšǯ ƒ† Ǯ›ǯǤ  ˆ –Ї †‡–‡”‹ƒ– ‘ˆ –Š‹• ƒ–”‹š
                ‹• ’‘•‹–‹˜‡ǡ –Їǡ –Ї ˆ—…–‹‘ ƒ••—‡• ‹‹— ˜ƒŽ—‡Ǥ  ˆ –Ї †‡–‡”‹ƒ– ‹• ‡‰ƒ–‹˜‡ǡ –Їǡ –Ї
                ˆ—…–‹‘ ƒ••—‡• ƒš‹— ˜ƒŽ—‡Ǥ  Ї”‡ˆ‘”‡ǡ ‹ ‘”†‡” –‘ ‰‡– –Ї ‹‹— ˜ƒŽ—‡ ‘ˆ –Ї ˆ—…–‹‘ǡ


                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 68
   160   161   162   163   164   165   166   167   168   169   170