Page 30 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 30

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics


                 Differentiating the above expression with respect to theta we get:

                  dR   v 2                                            1 2 ∗ sinθ ∗ cos θ
                                                 2
                    =     − sin θ  sinθ +  k + sin θ  +  cos θ  cos θ + ∗                  = 0
                                                                                   2
                   dθ  g                                              2     k + sin θ
                Let us simplify the terms inside the bracket first and then combine the rest, as follows:


                                                              1 2 ∗ sin θ ∗ cosθ
                                         2
                  − sinθ  sin θ +  k + sin θ  +  cos θ  cosθ + ∗                   = 0
                                                              2     k + sin θ
                                                                           2

                                                              sinθ
                                                    2
                                         2
                  − sinθ  sin θ +  k + sin θ  +  cos θ  1 +               = 0
                                                                   2
                                                            k + sin θ

                                                         k + sin θ + sinθ
                                                                2
                                                    2
                                         2
                  − sinθ  sinθ +  k + sin θ  +  cos θ                         = 0
                                                                    2
                                                             k + sin θ

                                                             2
                                                   2
                                                                        2
                                 2
                  − sin θ  k + sin θ  sinθ +  k + sin θ  + cos θ ( k + sin θ + sinθ)
                                                                                     = 0
                                              k + sin θ
                                                     2

                Taking   k + sin θ + sin θ  common in the above expression, we get:
                                2

                                                    2
                                                            2
                                      − sin q k + sin θ + cos q]
                                 2
                    sinθ +  k + sin θ                            = 0
                                                     2
                                              k + sin θ

                Since the first term of the above expression gives  sinθ = − k + sin θ , and the sign of the
                                                                                2
                  acute angle (angle of launch of the bullet) cannot be negative, only the second term is equated
                 to zero. Therefore, we have:

                                        2
                                2
                  − sin q k + sin θ + cos q]                        2        2
                           k + sin θ          = 0  =   − sinq k + sin θ + cos θ  = 0
                                  2

                Upon further simplification we have:

                    2
                                      2
                 cos q  = sinq k + sin θ

                Squaring both sides and simplifying we get

                 (1 − sin θ) = sin θ (k + sin θ)
                                   2
                         2
                            2
                                             2
                  Expanding the above expression, we get:
                    1 + sin θ − 2 sin θ  =  k sin θ + sin θ
                                  2
                        4
                                             2
                                                     4
                   Page 30      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   25   26   27   28   29   30   31   32   33   34   35