Page 38 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 38

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics


                ʹǤ͸Ǥͳ  ƒ••  ‘‡– ‘ˆ  ‡”–‹ƒ ȋ    Ȍ

                 ‡™–‘ǯ• •‡…‘† Žƒ™ ‘ˆ ‘–‹‘ ™‡ Šƒ˜‡ ȏ  α ƒȐǤ  • –Ї ƒ’’Ž‹‡† ˆ‘”…‡ Ǯ ǯ ‹…”‡ƒ•‡•ǡ –Ї ‹‡”–‹ƒ Ǯƒǯ
                ƒŽ•‘ ‹…”‡ƒ•‡•Ǥ  Š‹• ‹• „‡…ƒ—•‡ǡ ‹‡”–‹ƒ Šƒ• –‘ „‡ ’”‘˜‹†‡† „› –Ї ˆ‘”…‡ Ǯ ǯǤ

                 ‹‹Žƒ”Ž›ǡ ™Š‹Ž‡ ”‘–ƒ–‹‰ ƒ „‘†›ǡ –Ї ƒ‰—Žƒ” ‹‡”–‹ƒ ȋ‘’’‘•‹–‹‘ –‘ ”‘–ƒ–‹‘Ȍ ‹• ’”‘˜‹†‡† „› –Ї
                ƒ’’Ž‹‡† –‘”“—‡ ǯ ǯǤ

                  …ƒ•‡ ‘ˆ Ž‹‡ƒ” ‘–‹‘ǡ ƒ•• Ǯǯ ‹• –Ї ‹†‡š ‘ˆ ‹‡”–‹ƒǤ  ‘™‡˜‡”ǡ ƒ ‡“—‹˜ƒŽ‡– –‡” Šƒ• –‘ „‡
                †‡˜‡Ž‘’‡† –‘ …‘’—–‡ –Ї ƒ‰—Žƒ” ‹‡”–‹ƒǤ  Š‹• –‡” ‹• …ƒŽŽ‡† Dzƒ•• ‘‡– ‘ˆ ‹‡”–‹ƒdzǤ

                 Ї ƒ‡ ƒ•• ‘‡– ‘ˆ ‹‡”–‹ƒ ‘”‹‰‹ƒ–‡• ˆ”‘ –Ї ˆƒ…– –Šƒ–ǡ ‹– ‹• –Ї ‘‡– ‘ˆ ƒŽŽ –Ї Ž‹‡ƒ”
                ‹‡”–‹ƒ• ȋƒȌ ‘ˆ –Ї ‡Ž‡‡–• –Šƒ– ˆ‘” –Ї ”‘–ƒ–‹‰ ‡„‡”Ǥ

                 ‡– —• …‘•‹†‡” ȏ ‹‰ ʹǤʹ͸ȐǤ






                                  [Fig 2.26: Uniform rot rotating with angular acceleration 'α']






                                  [Fig 2.26: Uniform rot rotating with angular acceleration 'α']

                Each element on the rod experiences an inertia  dmαx . This inertia contributes to a moment about
                the ‘z-axis’ as show in [Fig 2.26]. All the elements along the rod contribute to the same sense of
                moment. The sum of all the moments is given by:

                                               L
                                                     2
                 Moment of Inertia of the rod =   dmαx
                                              0
                This inertia has to be provided by the applied torque to sustain the acceleration. Therefore, we have:


                               L
                                      2
                 Torque  T  =   dmαx
                              0
                                                                L                             L
                By Newton’s second law of motion:   Torque  T  =   dmαx = Iα  , by where   I =   dmx
                                                                                                   2
                                                                       2
                                                               0                             0
                Where (I) is the mass moment of inertia.




                   Page 38      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   33   34   35   36   37   38   39   40   41   42   43