Page 42 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 42

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics


                Since ‘x’ is expressed in terms of ‘θ’, the limits of the integral also change accordingly. That is:

                In the expression  x = R sin θ , when, (x = R), we have:  R = R sin θ  =  sinθ = 1  =  θ = π 2

                And when, (x = -R), we have:  −R = R sinθ  =  sin θ = −1  =  θ = − π 2

                Substituting the values of ‘x’ and ‘dx’ in equation (2.30), and replacing the limits with that of ‘θ’,
                we get:

                          π
                           2
                                  2    2   2              2   2
                 I

                  total  =    2   R − R sin θ  ∗ t ∗ ρ  ∗  R sin θ  ∗ R cos θ  dθ


                         −  π
                          2
                          π                           π                     π
                          2                           2  sin 2θ        tρR 4  2  1 − cos4θ
                                                          2
                                    2

                       4
                               2
                                                   4




                = 2tρR   cos θ sin θ  dθ = 2tρR                dθ =                     dθ
                          π                           π   4             2   π    2
                         −  2                       −  2                  −  2
                          π       π
                          2       2                                   π
                   tρR 4                         tρR 4   π     sin4θ 2

                =           dθ −   cos 4θ dθ =          θ  2  π  −       π

                     4    −  π  −  π               4     −  2     4   −  2
                          2       2
                                                                                     2
                         tρR 4     sin 2π  sin2π       tρR 4           πtρR 4     πR tρ R 2    mR 2
                 I    =       π −        +           =       π − 0   =         =             =
                 total
                          4          4       4           4               4           4           4





















                   Page 42      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   37   38   39   40   41   42   43   44   45   46   47