Page 54 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 54
Document Title
Fundamentals of Stress and Vibration Chapter Title
[A Practical guide for aspiring Designers / Analysts] 2. Engineering Mechanics
Ǥ
ǣ
ǡ ȋȌ
ȋǡ ǡ Ȍ ȏ
ʹǤͶʹȐǤ
[Fig 2.42: an elemental mass in a 3D space given acceleration about all 3 axes]
Let us now use the matrix form of vector product to find α × r .
i j k
α × r = α x α y α , where r = xi + yj + zk
z
x y z
Expanding the matrix, we get:
α × r = i α z − α y − j α z − α x + k α y − α x
x
y
z
y
z
x
Substituting the above expression of α × r in equation (2.34), we get:
dT = dm r × i α z − α y − j α z − α x + k α y − α x
y
x
x
z
z
y
Rewriting the above vector product in the matrix form, we get:
i j
k
dT = dm x y z
α z − α y − α z − α x α y − α x
x
z
y
z
y
x
Expanding the above matrix, we get:
dm i y α y − α x − z α x − α z − j x α y − α x − z α z − α y
y
x
x
x
z
y
y
z
+ k x α x − α z − y α z − α y
z
y
x
z
Page 54 QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,

