Page 54 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 54

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics






                 Ї  ”‘† ‹• ‘”‹‡–‡†  ƒ†                                            ”‘–ƒ–‡†  ‹  ƒŽŽ  ’‘••‹„އ
                ’Žƒ‡•  ƒ†  ƒš‡•Ǥ   ‡–  —•                                          ‘™ …‘ŽŽ‡…– ƒ† –ƒ„—Žƒ–‡
                –Ї ‹‡”–‹ƒ –‡”•ǣ

                 ••—‹‰ –Šƒ–ǡ ƒ                                                    ‡Ž‡‡–ƒŽ ƒ•• ȋ†Ȍ ‹•
                Ž‘…ƒ–‡† ƒ– …‘‘”†‹ƒ–‡• ȋšǡ                                           ›ǡ œȌ ƒ• •Š‘™ ‹ ȏ ‹‰
                ʹǤͶʹȐǤ







                            [Fig 2.42: an elemental mass in a 3D space given acceleration about all 3 axes]

                 Let us now use the matrix form of vector product to find  α    × r  .


                            i   j   k

                  α    × r   =  α x  α y  α  , where  r  = xi  + yj  + zk
                                     z
                           x    y   z
                 Expanding the matrix, we get:


                  α    × r   =  i  α z − α y  − j  α z − α x  + k α y − α x
                                            x
                             y
                                                 z
                                                                y
                                   z
                                                          x
                 Substituting the above expression of  α    × r   in equation (2.34), we get:


                  dT =  dm r  ×  i  α z − α y  − j  α z − α x  + k α y − α x
                                                                     y
                                                               x
                                                 x
                                        z
                                                      z
                                   y
                 Rewriting the above vector product in the matrix form, we get:
                                i             j
                                                            k

                  dT = dm       x             y             z
                            α z − α y  − α z − α x   α y − α x
                                                         x
                                                  z
                                                               y
                                   z
                             y
                                            x
                 Expanding the above matrix, we get:
                 dm  i   y α y − α x  − z α x − α z   − j   x α y − α x  − z α z − α y
                                                                y
                                                          x
                                               x
                          x
                                                                               z
                                                                         y
                                y
                                         z

                               + k  x α x − α z  − y α z − α y
                                       z
                                                     y
                                             x
                                                           z

                   Page 54      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   49   50   51   52   53   54   55   56   57   58   59